
RESEARCH ARTICLE

S3CMTF: Fast, accurate, and scalable method

for incomplete coupled matrix-tensor

factorization

Dongjin ChoiID
1, Jun-Gi Jang2, U KangID

2*

1 School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia,

United States of America, 2 Department of Computer Science and Engineering, Seoul National University,

Seoul, Republic of Korea

* ukang@snu.ac.kr

Abstract

How can we extract hidden relations from a tensor and a matrix data simultaneously in a

fast, accurate, and scalable way? Coupled matrix-tensor factorization (CMTF) is an impor-

tant tool for this purpose. Designing an accurate and efficient CMTF method has become

more crucial as the size and dimension of real-world data are growing explosively. However,

existing methods for CMTF suffer from lack of accuracy, slow running time, and limited scal-

ability. In this paper, we propose S3CMTF, a fast, accurate, and scalable CMTF method. In

contrast to previous methods which do not handle large sparse tensors and are not paralle-

lizable, S3CMTF provides parallel sparse CMTF by carefully deriving gradient update rules.

S3CMTF asynchronously updates partial gradients without expensive locking. We show that

our method is guaranteed to converge to a quality solution theoretically and empirically.

S3CMTF further boosts the performance by carefully storing intermediate computation and

reusing them. We theoretically and empirically show that S3CMTF is the fastest, outperform-

ing existing methods. Experimental results show that S3CMTF is up to 930× faster than

existing methods while providing the best accuracy. S3CMTF shows linear scalability on the

number of data entries and the number of cores. In addition, we apply S3CMTF to Yelp rat-

ing tensor data coupled with 3 additional matrices to discover interesting patterns.

Introduction

Given a tensor data, and related matrix data, how can we analyze them efficiently? Tensors

(i.e., multi-dimensional arrays) and matrices are natural representations for various real world

high-order data [1, 2, 3]. For instance, an online review site Yelp provides rich information

about users (name, friends, reviews, etc.), or businesses (name, city, Wi-Fi, etc.). One popular

representation of such data includes a 3-way rating tensor with (user ID, business ID, time)

triplets and an additional friendship matrix with (user ID, user ID) pairs. Coupled matrix-ten-

sor factorization (CMTF) is an effective tool for joint analysis of coupled matrices and a tensor.

The main purpose of CMTF is to integrate matrix factorization [4] and tensor factorization [5]

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Choi D, Jang J-G, Kang U (2019)

S3CMTF: Fast, accurate, and scalable method for

incomplete coupled matrix-tensor factorization.

PLoS ONE 14(6): e0217316. https://doi.org/

10.1371/journal.pone.0217316

Editor: Junwen Wang, Mayo Clinic Arizona,

UNITED STATES

Received: February 13, 2019

Accepted: May 8, 2019

Published: June 28, 2019

Copyright: © 2019 Choi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data files are

available from the web page: https://datalab.snu.ac.

kr/S3CMTF/.

Funding: This work was supported by the National

Research Foundation of Korea (NRF) funded by

MSIT (2019R1A2C2004990, and NRF-

016M3C4A7952587, PF Class Heterogeneous High

Performance Computer Development). The

Institute of Engineering Research at Seoul National

University provided research facilities for this work.

The ICT at Seoul National University provides

research facilities for this study. The funders had

http://orcid.org/0000-0002-7311-0644
http://orcid.org/0000-0002-8774-6950
https://doi.org/10.1371/journal.pone.0217316
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217316&domain=pdf&date_stamp=2019-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217316&domain=pdf&date_stamp=2019-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217316&domain=pdf&date_stamp=2019-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217316&domain=pdf&date_stamp=2019-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217316&domain=pdf&date_stamp=2019-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217316&domain=pdf&date_stamp=2019-06-28
https://doi.org/10.1371/journal.pone.0217316
https://doi.org/10.1371/journal.pone.0217316
http://creativecommons.org/licenses/by/4.0/
https://datalab.snu.ac.kr/S3CMTF/
https://datalab.snu.ac.kr/S3CMTF/

to efficiently extract the factor matrices of each mode. The extracted factors have many useful

applications such as latent semantic analysis [6, 7, 8], recommendation systems [9, 10], net-

work traffic analysis [11], and completion of missing values [12, 13, 14].

However, existing CMTF methods do not provide good performance in terms of time,

accuracy, and scalability. CMTF-Tucker-ALS [15], a method based on Tucker decomposition

[16], has a limitation that it is only applicable for dense data and not parallelizable. For sparse

real-world data, it assumes empty entries as zero and outputs highly skewed results which lead

to high reconstruction error. Moreover, CMTF-Tucker-ALS does not scale to large data

because it suffers from high memory requirement caused by M-bottleneck problem [17].

CMTF-OPT [12] is a CMTF method based on CANDECOMP/PARAFAC (CP) decomposi-

tion [18]. SDF [19] provided Quasi-Newton and nonlinear least squares optimization tech-

niques for general coupled factorization problems where factors may have certain structures as

Toeplitz, orthogonal and nonnegative. CMTF-Tucker-ALS and CMTF-OPT undergo high

reconstruction error since the former is not applicable to sparse data, and the latter focuses

only on CP model and thus cannot be generalized to the Tucker model. Furthermore, both

methods are sequential and hard to take benefit of multi-core parallelization.

In this paper, we propose S3CMTF (Sparse, lock-free SGD based, and Scalable CMTF), a

CMTF method which resolves the problems of previous methods. S3CMTF provides parallel,

sparse CMTF based on Tucker factorization unlike previous methods which do not support

sparse tensors or cannot be parallelized. We also show that asynchronously parallel stochastic

gradient descent (SGD) is useful for S3CMTF in multi-core shared memory systems without

expensive locking. S3CMTF further boosts the performance by storing intermediate computa-

tion and reusing them. Table 1 shows the comparison of S3CMTF and other existing methods.

The main contributions of our study are as follows:

• Algorithm: We propose S3CMTF, a coupled tensor-matrix factorization algorithm for

matrix-tensor joint datasets. S3CMTF is designed to efficiently extract factors from the

joint datasets by taking advantage of sparsity, exploiting intermediate data. We propose a

method which resolves conflicts of parallelization and leads to a solution with guaranteed

convergence.

• Performance: S3CMTF shows the best performance on accuracy, speed, and scalability.

S3CMTF runs up to 930× faster and is more scalable than existing methods as shown in Fig

1A. For real-world datasets, S3CMTF converges faster to the better optimum as shown in

Fig 1B.

• Discovery: Applying S3CMTF on Yelp review dataset with a 3-mode tensor (user, business,

time) coupled with 3 additional matrices ((user, user), (business, category), and (business,

city)), we observe interesting patterns and clusters of businesses and suggest a process for

personal recommendation.

Table 1. Comparison of our proposed S3CMTF and the existing CMTF methods. S3CMTF outperforms all other methods in terms of time, accuracy, scalability, mem-

ory usage, and parallelizability.

Method Time Accuracy Scalability Memory Parallel

CMTF-Tucker-ALS slow low low high no

CMTF-OPT slow low low high no

S3CMTF-base fast high high lower yes

S3CMTF-opt faster high high low yes

https://doi.org/10.1371/journal.pone.0217316.t001

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 2 / 20

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0217316.t001
https://doi.org/10.1371/journal.pone.0217316

Preliminaries and related works

In this section, we describe preliminaries for tensor and coupled matrix-tensor factorization.

We list all symbols used in this paper in Table 2.

Tensor

A tensor is a multi-dimensional array. Each ‘dimension’ of a tensor is called mode or way. The

length of each mode is called ‘dimensionality’ and denoted by I1, � � �, IN. In this paper, an N-

mode or N-way tensor is denoted by the boldface Euler script capital (e.g. X 2 RI1�I2�...�IN),

and matrices are denoted by boldface capitals (e.g. A). xα and aβ denote the entry of X and A

with indices α and β, respectively.

We describe tensor operations used in this paper. A mode-n fiber is a vector which

has fixed indices except for the n-th index in a tensor. The mode-n matrix product of a

tensor X 2 RI1�I2�...�IN with a matrix A 2 RJ�In is denoted by X�nA and has the size of

I1×� � �In−1×J×In+1 � � � × IN. It is defined as:

ðX�nAÞi1 ���in� 1 jinþ1 ���iN
¼
XIn

in¼1

xi1 i2 ���iN ajin ; ð1Þ

where ajin is the (j, in)-th entry of A. For brevity, we use the following shorthand notation for

multiplication on every mode as in [20]:

X� fAg≔X�1A
ð1Þ�2A

ð2Þ � � � �N A
ðNÞ; ð2Þ

where {A} denotes the ordered set {A(1), A(2), � � �, A(N)}.

We use the following notation for multiplication on every mode except n-th mode.

X�� nfAg≔X�1A
ð1Þ � � � �n� 1A

ðn� 1Þ�nþ1A
ðnþ1Þ � � � �NA

ðNÞ:

We examine the case that an ordered set of row vectors {a(1), a(2), � � �, a(N)}, denoted by {a}, is

multiplied to a tensor X. First, consider the multiplication for every corresponding mode. By

Fig 1. Comparison of our proposed S3CMTF and the existing methods. (a) For a fixed number of nonzeros,

S3CMTF takes constant time as dimensionality grows, while existing methods become slower. Our sequential method

S3CMTF-opt1 is 930× and 54× faster than CMTF-OPT and CMTF-Tucker ALS, respectively. (b) S3CMTF-opt20

shows the best convergence rate and accuracy on real world Yelp dataset. CMTF-Tucker-ALS shows O.O.M. in both

experiments. (O.O.M.: out of memory error).

https://doi.org/10.1371/journal.pone.0217316.g001

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 3 / 20

https://doi.org/10.1371/journal.pone.0217316.g001
https://doi.org/10.1371/journal.pone.0217316

Eq (1),

X� fag ¼
XI1

i1¼1

XI2

i2¼1

� � �
XIN

iN¼1

xi1 i2 ���iN a
ð1Þ

i1 a
ð2Þ

i2 � � � a
ðNÞ
iN ;

where aðmÞk denotes the k-th element of a(m). Then, consider the multiplication for every mode

except n-th mode. Such multiplication results in a vector of length In. The k-th entry of the vec-

tor is

½X�� nfag�k ¼
X

8a2O
n;k
X

xaa
ð1Þ

i1 � � � a
ðn� 1Þ

in� 1
aðnþ1Þ

inþ1
� � � aðNÞiN ; ð3Þ

where O
n;k
X denotes the index set of X having its n-th index as k. α = (i1 i2� � �iN) denotes the

index for an entry.

Tucker decomposition

Tucker decomposition is one of the most popular tensor factorization models. Tucker decom-

position factorizes an N-mode tensor X 2 RI1�I2�...�IN into a core tensor G 2 RJ1�J2�...�JN and

factor matrices Uð1Þ 2 RI1�J1 ;Uð2Þ 2 RI2�J2 ; . . . ;UðNÞ 2 RIN�JN satisfying

X � ~X ¼ G�1U
ð1Þ�2U

ð2Þ � � � �NU
ðNÞ ¼ G� fUg:

Table 2. Table of symbols.

Symbol Definition

X input tensor

G core tensor

N order (number of modes) of the input tensor

In dimensionality of n-th mode of input tensor X

Jn dimensionality of n-th mode of core tensor G

α a tensor index (i1 i2� � �iN)

xα the entry of X with index α

X(n) mode-n matricization of a tensor

U(n) n-th factor matrix of X

{U} set of all factor matrices of X

uðnÞi
the i-th row vector of U(n)

{u}α ordered set of row vectors fuð1Þi1 ; u
ð2Þ

i2 ; . . . ;uðNÞiN g

fug>
a ordered set of column vectors fuð1Þ>i1 ; uð2Þ>i2 ; . . . ;uðNÞ>iN g

uðnÞij
entry of U(n) with index (i, j)

Y coupled matrix

β a matrix index k1k2

yβ the entry of Y with index β

V factor matrix for the coupled matrix Y

vk the k-th row vector of V

OX observed index set of X

O
n;i
X

subset of OX having i as the n-th index

https://doi.org/10.1371/journal.pone.0217316.t002

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 4 / 20

https://doi.org/10.1371/journal.pone.0217316.t002
https://doi.org/10.1371/journal.pone.0217316

Element-wise formulation of Tucker model is

xa � ~xa ¼
XJ1

j1¼1

XJ2

j2¼1

� � �
XJN

jN¼1

gj1 j2 ���jN u
ð1Þ

i1 j1u
ð2Þ

i2 j2 � � � u
ðNÞ
iN jN

¼ G�1u
ð1Þ

i1 �2u
ð2Þ

i2 � � � �Nu
ðNÞ
iN ≔G� fuga;

ð4Þ

where α is a tensor index (i1i2� � �iN), and uðnÞin denotes the in-th row of factor matrix U(n). {u}α

denotes the set of factor rows fuð1Þi1 ;u
ð2Þ

i2 ; . . . ;uðNÞiN g. The core tensor G indicates the relation

between the factors in Tucker formulation. When the core tensor size is restricted as J1 =

J2 = � � � = JN and the core tensor structure is hyper-diagonal, it is equivalent to CANDECOMP/

PARAFAC (CP) decomposition. Orthogonality constraint can optionally be imposed to the

Tucker decomposition by forcing the factor matrices to have orthonormal columns (e.g. U(n)T

U(n) = I for n = 1, � � �, N where I is an identity matrix).

Coupled matrix-tensor factorization

Coupled matrix-tensor factorization (CMTF) is proposed for joint factorization of a tensor

and matrices. CMTF integrates matrix factorization and tensor factorization.

Definition 1. (Coupled Matrix-Tensor Factorization) Given an N-mode tensorX 2
RI1�...�IN and a matrix Y 2 RIc�K where c is the coupled mode, X � ~X ¼ G� fUg, and Y �
~Y ¼ UðcÞV> are the coupled matrix-tensor factorization. UðcÞ 2 RIc�Jc is the c-th mode factor
matrix, andV 2 RK�Jc denotes the factor matrix for the coupled matrix. Finding the factor
matrices and core tensor for CMTF is equivalent to solving

arg min
Uð1Þ ;���;UðNÞ ;V;G

kX � G� fUgk2
þ kY � UðcÞV>k2

; ð5Þ

where k • k denotes the Frobenius norm.

Various methods have been proposed to efficiently solve the CMTF problem. An alternat-

ing least squares (ALS) method CMTF-Tucker-ALS [15] was proposed. CMTF-Tucker-ALS

is based on Tucker-ALS (HOOI) [21] which is a popular method for fitting the Tucker

model. Tucker-ALS suffers from a crucial intermediate memory-bottleneck problem known

as M-bottleneck problem [17] that arises from materialization of a large dense tensor

X�� nfUg
>

as intermediate data where fUg> ¼ fUð1Þ>;Uð2Þ>; . . . ;UðNÞ>g. Generalized cou-

pled tensor factorization frameworks [22, 23] have been proposed, and they propose multipli-

cative methods for non-negative factorization. SDF [19] provided Quasi-Newton and

nonlinear least squares optimization techniques for general coupled factorization problems

where factors may have certain structures as Toeplitz, orthogonal and nonnegative. A Bayes-

ian method [24] has been proposed. It suggests a generative model for tensor factorization

and gets parameters with Gibbs sampling method. Most methods for CMTF use CP decom-

position model for ~X where J1 = J2 = � � � = JN and the core tensor G is hyper-diagonal [12, 25,

26, 27, 28, 19]. CMTF-OPT [12] is a representative algorithm for this problem which uses

nonlinear conjugate gradient descent method to find factors. HaTen2 [26, 29], and SCouT

[25] propose distributed methods for CMTF using CP decomposition model based on the

MAPREDUCE framework. Turbo-SMT [27] provides a time-boosting technique for CP-based

CMTF methods.

Note that Eq (5) requires all data entries of X and Y to be observed. Unobserved values

are set to zeros when X and Y are sparse, which results in low accuracy. However, most real

world data set shows high sparsity. For example, the density of real world tensor we use for

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 5 / 20

https://doi.org/10.1371/journal.pone.0217316

experiments vary from 10−7 to 10−4. For this reason above methods show low accuracy for

real-world sparse data; what we focus on this paper is solving CMTF for sparse data.

Definition 2. (Sparse CMTF) WhenX and Y are sparse, sparse CMTF aims to find factors
only considering the observed entries. LetWð1Þ indicates the observed entries of X such that

wð1Þ
a
¼

(
1 if xa is observed

0 if xa is unobserved
; for 8a 2 OX:

Let W(2) indicates the observed entries of Y analogously. We modify Eq (5) as

argmin
Uð1Þ ;���;UðNÞ ;V;G

kW
ð1Þ
�ðX � G� fUgÞk2

þ kWð2Þ � ðY � UðcÞV>Þk2
; ð6Þ

where � denotes the Hadamard product (element-wise product).
CMTF-Tucker-ALS does not support sparse CMTF since it calculates a singular vector of

full and dense matrix. CMTF-OPT provides single machine approach for sparse CMTF for CP

model, and CDTF [30] and FlexiFaCT [28] provide distributed methods for sparse CMTF for

CP model. Note that all existing methods are based on CP model. Our method is for more gen-

eral setting, Tucker decomposition, and also easily applied to CP model.

Proposed method

Overview

S3CMTF provides an algorithm for the joint factorization of Tucker decomposition. The

major challenge of parallel Tucker decomposition is to avoid the race condition, and design an

efficient algorithm for updating factors.

In this section, we describe S3CMTF (Sparse, lock-free SGD based, and Scalable CMTF),

our proposed method for fast, accurate, and scalable CMTF. Our purpose is to minimize the

number of race conditions with probabilistic guarantee by exploiting problem characteristic

and minimize calculations by exploiting intermediate data.

We first propose a lock-free parallel method S3CMTF-base; then, we propose a time-

improved version S3CMTF-opt. Fig 2 shows the overall scheme of S3CMTF. S3CMTF-base

employs asynchronous parallel SGD for the parallel update with proper workload distribution,

and S3CMTF-opt further improves the speed of S3CMTF-base by exploiting intermediate data

and reusing them.

Fig 2. The scheme for S3CMTF.

https://doi.org/10.1371/journal.pone.0217316.g002

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 6 / 20

https://doi.org/10.1371/journal.pone.0217316.g002
https://doi.org/10.1371/journal.pone.0217316

Objective function & gradient

We discuss the improved formulation of the sparse CMTF problem defined in Definition 2.

For simplicity, we consider the case that one matrix Y 2 RIc�K is coupled to the c-th mode of a

tensor X 2 RI1�...�IN . Naive calculation of Eq (6) takes excessive time and memory since it

includes materialization of dense tensor G� fUg. Therefore, we re-formulate the new CMTF

objective function f to exploit the sparsity of data and add regularization. f is the weighted sum

of two functions ft and fm which are element-wise sums of squared reconstruction error and

regularization terms of tensor X and matrix Y, respectively.

f ¼
1

2
ft þ

lm

2
fm; ð7Þ

where λm is a balancing factor of the two functions.

ft ¼
X

8a2OX

ðxa � ðG� fugaÞÞ
2

" #

þ lreg kGk
2
þ
XN

n¼1

kUðnÞk2

 !

;

where α = (i1� � �iN), OX is the observable index set of X, and λreg denotes the regularization

parameter for factors. We rewrite the equation so that it is amenable to SGD update:

ft ¼
X

8a2OX

ðxa � ðG� fugaÞÞ
2
þ
lreg

jOXj
kGk

2
þ lreg

XN

n¼1

kuðnÞin k
2

jO
n;in
X j

" #

;

where α = (i1� � �iN). Note that O
n;in
X is the subset of OX having in as the n-th index. Now we for-

mulate fm, the sum of squared errors of coupled matrix and regularization term corresponding

to the coupled matrix.

fm ¼
X

8b¼ðj1 j2Þ2OY

ðyb � uðcÞj1 v
>

j2
Þ

2
þ

lreg

jO
2;j2
Y j
kvj2k

2

� �

:

We calculate the gradient of f (Eq (7)) with respect to factors and core for stochastic gradient

descent update. Consider that we pick one index a ¼ ði1 . . . iNÞ 2 OX and matrix index β =

(j1j2) 2 OY. We calculate the corresponding partial derivatives of f with respect to the factors

and the core tensor as follows.

@f
@uðnÞin

�
�
�
�
a

¼ � xa � ðG� fugaÞð Þ½ðG�� nfugaÞðnÞ�
>
þ

lreg

jO
n;in
X j

uðnÞin ; ð8aÞ

@f
@G

�
�
�
�
a

¼ � xa � ðG� fugaÞð Þ � fug>
a
þ
lreg

jOXj
G; ð8bÞ

@f
@uðcÞj1

�
�
�
�
b

¼ � lmðyb � uðcÞj1 v
>
j2
Þvj2 ; ð8cÞ

@f
@vj2

�
�
�
�
b

¼ � lmðyb � uðcÞj1 v
>
j2
ÞuðcÞj1 þ

lmlreg

jO
2;j2
Y j

vj2 : ð8dÞ

Note that our formulated coupled matrix-tensor factorization model is easily generalized to

the case that multiple matrices are coupled to a tensor. We couple multiple matrices to a tensor

for experiments in Sections for experiments and discovery.

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 7 / 20

https://doi.org/10.1371/journal.pone.0217316

Multi-core parallelization

How can we parallelize the SGD updates for CMTF in multiple cores? In CMTF, SGD is hard

to be parallelized without conflicts since each update may suffer from memory conflicts by

attempting to write the core tensor G to memory concurrently [31]. One solution for this prob-

lem is memory locking and synchronization. However, there are lots of overhead associated

with locking. Therefore, we use lock-free strategy to parallelize S3CMTF. We develop a parallel

update scheme for S3CMTF by adopting HOGWILD! update scheme [32]. For any SGD prob-

lem, a hypergraph is induced where its nodes represent parameters and edges represent the set

of parameters related to a data point.

Definition 3. (Induced Hypergraph) The objective function in Eq (7) induces a hypergraph
G = (V, E) whose nodes represent factor rows and the core tensor. Each entry ofX and Y induces
a hyperedge e 2 E consisting of corresponding factor rows or core tensor. Fig 3A shows an exam-
ple induced graph of S3CMTF.

Lock-free parallel updates often converge nearly linearly for a sparse SGD problem in

which conflicts between different updates rarely occur [32]. However, in CMTF with Tucker

formulation, every update of tensor entries includes the core tensor G as shown in Fig 3A. We

allocate the update of the core tensor G to one dedicated CPU core and increase the step size

by the number to keep the expected step size unchanged, which leads to line 7 of Algorithm 1

described in the next section. Then we obtain a new induced hypergraph in Fig 3B. Previous

induced hypergraph (Fig 3A) implies that every factor update (red, blue, and orange hyper-

edges) is in conflict with each other on updating the core tensor, resulting to unexpected

behaviors. In contrast, the new induced hypergraph shows that the update of factors is inde-

pendent of that of the core tensor.

Note that our problem with this induced hypergraph is a general case of matrix completion

problem in [32] which provides convergence guarantee of lock-free parallelism; each edge in

our hypergraph entails N vertices, while that in [32] entails only 2 vertices.

Algorithm 1 S3CMTF-base

Require: Tensor X 2 RI1�...�IN, rank (J1, � � �, JN), number of parallel cores
P, initial learning rate η0, decay rate μ, coupled mode c, and coupled
matrix Y 2 RIc�K

Emsure: Core tensor G 2 RJ1�...�JN, factor matrices U(1), � � �, U(N), V
1: Initialize G, UðnÞ 2 RIn�Jn for n = 1, � � �, N, and V randomly
2: repeat

Fig 3. Example hypergraphs induced by S3CMTF objective function (Eq (7)). A matrix Y is coupled to the second

mode of X with a coupled factor matrix V. Each node represents a factor row or the core tensor. Each hyperedge

includes corresponding factors to an SGD update. (a) Induced hypergraph with the core tensor. Every hyperedge

corresponding to tensor entries includes G. (b) Induced hypergraph without core tensor. The graph has sparse

structure as every node is shared by only few hyperedges.

https://doi.org/10.1371/journal.pone.0217316.g003

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 8 / 20

https://doi.org/10.1371/journal.pone.0217316.g003
https://doi.org/10.1371/journal.pone.0217316

3: for 8a ¼ ði1 . . . iNÞ 2 OX, 8β = (j1j2) 2 ΩY in random order do in
parallel
4: if α is picked then
5: (@f

@uð1Þi1
,� � �, @f

@uðNÞiN

,@f
@G
) compute_gradient(α,xα,G)

6: uðnÞin uðnÞin � Zt
@f

@uðnÞin

, (for n = 1, � � �, N)

7: G G � ZtP
@f
@G

(executed by one dedicated CPU core)
8: end if
9: if β is picked then
10: ~yb uc

j1
v>j2,

@f

@uðcÞj1
 � lmðyb � ~ybÞvj2

11: @f
@vj2
 � lmðyb � ~ybÞu

ðcÞ
j1 þ

lmlreg
jOY2;j2

j
vj2

12: uðcÞj1 uðcÞj1 � Zt
@f

@uðcÞj1
, vj2 vj2 � Zt

@f
@vj2

13: end if
14: end for
15: ηt = η0(1 + μt)−1

16: until convergence conditions are satisfied
17: for n = 1, . . ., N do
18: Q(n),R(n) QR decomposition of U(n)

19: U(n) Q(n), G G�nR
ðnÞ

20: end for
21: V VRðcÞ>

22: return G, U(1), � � �, U(N), V

S3CMTF-base

We present our method, S3CMTF-base, combination of the aforementioned techniques.

S3CMTF-base solves the sparse CMTF problem by parallel SGD techniques explained above.

Algorithm 1 shows the procedure of S3CMTF-base. In the beginning, S3CMTF-base initializes

factor matrices and the core tensor randomly (line 1 of Algorithm 1). The outer loop (lines 2-

16) repeats until the factor variables converge. The inner loop (lines 3-14) is performed by sev-

eral cores in parallel. In each inner loop, S3CMTF-base selects an index which belongs to OX

orOY in random order (line 3). If a tensor index α is picked, then the algorithm calculates the

partial gradients of corresponding factor rows using compute_gradient (Algorithm 2) in line 5,

and updates factor row vectors (line 6). Core tensor G is updated by one dedicated CPU core

(line 7). Note that if line 7 is run by multiple cores, a core may interrupt another core’s update

of G by overwriting the gradient
@f
@G

, which leads to unexpected update of G and hinders con-

vergence; thus, we eliminate the possibility of such conflict by allocating update of G to the

dedicated CPU core. The update of line 7 is done independently by the dedicated CPU core,

but concurrently with gradient calculation (line 5) and factor updates (line 6) of other CPU

cores. The number P of cores is multiplied to the gradient to compensate for the one-core

update so that SGD uses the same expected learning rate for all the parameters. If a coupled

matrix index β is picked, then the gradient update is performed on corresponding factor row

vectors (lines 9-13). At the end of the outer loop, the learning rate ηt of the t-th iteration is

monotonically decreased [33]. (line 15). QR decomposition is applied on factors to satisfy

orthogonality constraint of factor matrices (lines 17-20). QR decomposition of U(n) generates

Q(n), an orthogonal matrix of the same size as U(n), and a square matrix RðnÞ 2 RJn�Jn . Substitut-

ing U(n) by Q(n) (line 19) and G by G�1R
ð1Þ . . .�NR

ðNÞ (after N-th execution of line 19) result

in orthogonal factors with equivalent factorization quality [5]. In the same manner, we substi-

tute V by VRðcÞ> (line 21) since ~Y ¼ UðcÞV> ¼ QðcÞRðcÞV> ¼ QðcÞðVRðcÞ>Þ>.

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 9 / 20

https://doi.org/10.1371/journal.pone.0217316

Algorithm 2 compute_gradient(α,xα,G)
Require: Tensor entry xα, a ¼ ði1 � � � iNÞ 2 OX, core tensor G

Ensure: Gradients @f

@uð1Þi1
, @f

@uð2Þi2
,� � �, @f

@uðNÞiN

,@f
@G

1: ~xa G� fuga
2: for n = 1, � � �, N do

3: @f

@uðnÞi
 � xa � ~xað Þ½ðG�� nfugaÞðnÞ�

>
þ

lreg

jO
n;in
X
j
uðnÞin

4: end for

5: @f
@G
 � xa � ~xað Þ � fug>

a
þ

lreg
jOX j

G

6: return @f

@uð1Þi1
, @f

@uð2Þi2
,� � �, @f

@uðNÞiN

,@f
@G

Algorithm 3 compute_gradient_opt(α,xα,G)
Require: Tensor entry xα, a ¼ ði1 � � � iNÞ 2 OX, core tensor G

Ensure: Gradients @f

@uð1Þi1
, @f

@uð2Þi2
,� � �, @f

@uðNÞiN

,@f
@G

1: ~xa 0

2: for 8ðj1j2 . . . jNÞ 2 OG do

3: sj1 j2...jN
 gj1 j2...jN

uð1Þi1 j1u
ð2Þ

i2 j2 . . . uðNÞiN jN

4: ~xa ~xa þ sj1 j2...jN

5: end for
6: for n = 1, . . ., N do

7: @f

@uðnÞin

 � ðxa � ~xaÞ � CollapseðS; nÞ � uðnÞin þ
lreg

jO
n;in
X
j
uðnÞin

8: end for
9: @f

@G
 � ðxa � ~xaÞ � S� Gþ lregG

10: return @f

@uð1Þi1
, @f

@uð2Þi2
,. . ., @f

@uðNÞiN

,@f
@G

S3CMTF-opt

There is much room for improvement in calculations of S3CMTF-base. The computational

bottleneck of S3CMTF-base is compute_gradient. There are implicitly redundant calculations

during multiple tensor-matrix products. For example, calculation of G�� nfuga is repeated N
times for every execution of compute_gradient (Algorithm 2) in line 5 of Algorithm 1. The cal-

culation of G�� nfuga for the n-th mode is equivalent to a special case of a well-studied opera-

tion, matricized tensor times Khatri-Rao product (MTTKRP). MTTKRP is an operation to

compute X(n)�8k 6¼ n A(k) where X(n) is a matricized tensor along the n-th mode, and�

denotes the Khatri-Rao product [34]. G�� nfuga is equivalent to an MTTKRP G(n)�8k 6¼ n u(k)

where the matrix A(k) is replaced by the vector u(k).

Calculating MTTKRP along all modes is known as the CP gradient problem. In

compute_gradient, we need to calculate G�� nfuga for all N modes (line 3 of Algorithm 2),

raising the special case of the CP gradient problem. To solve the particular CP gradient prob-

lem faster, we propose a method to avoid redundant computations by reusing the intermedi-

ate calculations in previous steps. Calculation of G�� nfuga is equivalent to a summation of

gj1 j2...jN
uð1Þi1 j1 . . . uðn� 1Þ

in� 1 jn� 1
uðnþ1Þ

inþ1 jnþ1
. . . uðNÞiN jN (Eq 3) which is a product of the core value gj1 j2...jN

and

N − 1 related factor values. Before the calculation of the CP gradient, ~xa ¼ G� fuga is calcu-

lated in line 1 of Algorithm 2. We exploit the fact that G� fug
a

is the summation of the

product
PJ1

j1¼1
. . .
PJN

jN¼1
gj1...jN

uð1Þi1 j1 . . . uðNÞiN jN (Eq 4), the product of a core value and all N related

factor values. In S3CMTF-opt, we save time by storing the intermediate calculations for ~xa
and reusing them.

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 10 / 20

https://doi.org/10.1371/journal.pone.0217316

Definition 4. (Intermediate Data) When updating the factor rows for a tensor entry
xa¼ði1���iN Þ, we define (j1j2� � �jN)-th element of intermediate data S:

sj1 j2���jN gj1 j2 ���jN u
ð1Þ

i1 j1u
ð2Þ

i2 j2 � � � u
ðNÞ
iN jN :

There is no extra time required for calculating S because S is generated while calculating

~xa. Lemma 1 shows that ~xa is calculated by summing all entries of S.

Lemma 1. For a given tensor index α, the estimated tensor entry
~xa ¼

PJ1
j1¼1

PJ2
j2¼1

. . .
PJN

jN¼1
sj1 j2...jN

.

Proof. The proof is straightforward by Eq (4).

We use S with following Collapse operation to calculate gradients efficiently.

Definition 5. (Collapse) The Collapse operation of the intermediate tensor S on the n-th
mode outputs a row vector defined as:

CollapseðS; nÞ ¼ ½
P
8d2O

n;1
S

sd;
P
8d2O

n;2
S

sd; � � � ;
P
8d2O

n;Jn
S

sd�:

Collapse operation aggregates the elements of intermediate tensor S with respect to a fixed

mode. We re-express the calculation of gradients for tensor factors in Eqs (8a)–(8d) in an effi-

cient manner.

Lemma 2. (Efficient Gradient Calculation) The following statements are equivalent calcula-
tions of the gradients as in Eqs (8a)–(8d).

~xa
XJ1

j1¼1

XJ2

j2¼1

� � �
XJN

jN¼1

sj1j2 ���jN ; ð9aÞ

@f
@uðnÞin

 � ðxa � ~xaÞ � CollapseðS; nÞ � uðnÞin þ
lreg

jO
n;in
X j

uðnÞin ; ð9bÞ

@f
@G
 � ðxa � ~xaÞ � S� Gþ lregG: ð9cÞ

where α = (i1 i2� � �iN), and� denotes element-wise division.

Proof. In Lemma 1, Eq (9a) is proved. To prove the equivalence of Eq (9b) and the Eq (8a),

it suffices to show ½ðG�� nfugaÞðnÞ�
>
¼ CollapseðS; nÞ � uðnÞin We use Eq (3) for the proof.

a ¼ ði1 . . . iNÞ 2 OX and d ¼ ðj1 . . . jNÞ 2 O
n;k
G .

½ðG�� nfugaÞðnÞ�
>

k ¼
X

8d2O
n;k
G

gdu
ð1Þ

i1j1 � � � u
ðn� 1Þ

in� 1 jn� 1
uðnþ1Þ

inþ1 jnþ1
� � � uðNÞiN jN

¼
X

8d2O
n;k
G

gdu
ð1Þ

i1j1 � � � u
ðn� 1Þ

in� 1 jn� 1
uðnÞink

uðnþ1Þ

inþ1 jnþ1
� � � uðNÞiN jN=u

ðnÞ
ink

¼
X

8d2O
n;k
S

sd=u
ðnÞ
ink

¼
½CollapseðS; nÞ�k

uðnÞink

¼ ½CollapseðS; nÞ � uðnÞin �k:

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 11 / 20

https://doi.org/10.1371/journal.pone.0217316

Next, to show the equivalence of Eq (9c) and the second equation of Eq (8), it suffices to show

1� fug>
a
¼ S� G.

½1� fug>
a
�
g¼ðl1 l2 ���lN Þ

¼ uð1Þi1 l1u
ð2Þ

i2 l2
� � � uðNÞiN lN

¼ ggu
ð1Þ

i1 l1
� � � uðNÞiN lN

=gg

¼ sg=gg

¼ ½S� G�
g
:

S3CMTF-opt replaces compute_gradient (Algorithm 2) of S3CMTF-base with compute_gra-
dient_opt (Algorithm 3), the time-optimized alternative. We prove that the new calculation

scheme is faster than the previous one.

Lemma 3. compute_gradient_opt is faster than compute_gradient. The theoretical time com-
plexity of compute_gradient is OðN2JNÞ and the time complexity of compute_gradient_opt is
OðNJNÞ where J1 = J2 = � � � = JN = J.

Proof. We assume that I1 = I2 = � � � = IN = I for brevity. First, we calculate the time complex-

ity of compute_gradient (Algorithm 2). Given a tensor index α, computing ~xa (line 1 of Algo-

rithm 2) takes OðNJNÞ. Computing (G�� nfuga) (line 3) takes OðNJNÞ. Thus, aggregate

time for calculating the row gradient for all modes (lines 2-4) takes OðN2JNÞ. Calculating

ðxa � ~xaÞ � fug
>

a
(line 5) takes OðNJNÞ. In total, compute_gradient takes OðN2JNÞ time. Next,

we calculate the time complexity of compute_gradient_opt (Algorithm 3). Computing an entry

of intermediate data S (line 3 of Algorithm 3) takes OðNÞ. Aggregate time for getting S (lines

2-5) is OðNJNÞ since jOGj ¼ OðJNÞ. Calculating row gradient for all modes (lines 6-8) takes

OðNJNÞ since Collapse operation takes OðJNÞ. Calculating gradient for core tensor (line 9)

takes OðJNÞ. In total, compute_gradient_opt takes OðNJNÞ time.

Analysis

We analyze the proposed method in terms of time complexity per iteration. For simplicity, we

assume that I1 = I2 = � � � = IN = I, and J1 = J2 = � � � = JN = J. Table 3 summarizes the time com-

plexity (per iteration) and memory usage of S3CMTF and other methods. Note that the mem-

ory usage refers to the auxiliary space for temporary variables used by a method.

Lemma 4. The time complexity (per iteration) of S3CMTF-base is OðjOjN2JN=P þ jOYjJ=PÞ
and the time complexity (per iteration) of S3CMTF-opt is OðjOjNJN=P þ jOYjJ=PÞ where P
denotes the number of parallel cores.

Proof. First, we check the time complexity of S3CMTF-base. When a tensor index α is

picked in the inner loop (line 4 of Algorithm 1), calculating gradients with respect to tensor

factors (line 5) takes OðN2JNÞ as shown in Lemma 3. Updating factor rows (line 6) takes

Table 3. Comparison of time complexity (per iteration) and memory usage of our proposed S3CMTF and other

CMTF algorithms. S3CMTF-opt shows the lowest time complexity and S3CMTF-base shows the lowest memory

usage. For simplicity, we assume that all modes are of size I, of rank J, and an I × K matrix is coupled to one mode. P is

the number of parallel cores. (� indicates the lowest time or memory).

Time complexity (per iter.) Memory usage

S3CMTF-base OðjOXjN2JN=P þ jOYjJ=PÞ OðPJÞ�

S3CMTF-opt OðjOXjNJN=P þ jOYjJ=PÞ� OðPJNÞ
CMTF-Tucker-ALS OðNIN� 1J2 þ NI2JN� 1 þ I2KÞ OðIJN� 1Þ

CMTF-OPT OðjOXjNJ þ NIN� 1J þ IJKÞ OðIN� 1J þ JKÞ

https://doi.org/10.1371/journal.pone.0217316.t003

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 12 / 20

https://doi.org/10.1371/journal.pone.0217316.t003
https://doi.org/10.1371/journal.pone.0217316

OðNJÞ, and updating core tensor (line 7) takes OðJNÞ. If a coupled matrix index β is picked

(line 9), calculating ~yb (line 10) takes OðJÞ. Calculating and updating the factor rows corre-

sponding to coupled matrix entry (lines 10-12) take OðJÞ. All calculations except updating

core tensor (line 7) are conducted in parallel. Finally, for all a 2 OX and β 2 OY, S3CMTF-base

takes OðjOXjN2JN=P þ jOYjJ=PÞ for one iteration. S3CMTF-opt uses compute_gradient_opt
instead of compute_gradient in line 5 of Algorithm 1, whose time complexity is shown in

Lemma 3. Overall running time per iteration for S3CMTF-opt is OðjOXjNJN=P þ jOYjJ=PÞ.

Experiments

In this and the next sections, we experimentally evaluate S3CMTF. Especially, we answer the

following questions.

Q1: Performance How accurate and fast is S3CMTF compared to competitors?

Q2: Scalability How do S3CMTF and other methods scale in terms of dimensionality, the

number of observed entries, and the number of cores?

Q3: Discovery What are the discoveries of applying S3CMTF on real-world data?

The source codes of our method and datasets used in this paper are available at https://

datalab.snu.ac.kr/S3CMTF.

Experimental settings

Data. Table 4 shows the data we used in our experiments. We use three real-world data-

sets, MovieLens (http://grouplens.org/datasets/movielens/10m), Netflix (http://www.

netflixprize.com), and Yelp (http://www.yelp.com/dataset_challenge), as well as synthetic data

to evaluate S3CMTF. Each entry of the real-world datasets represents a rating, which consists

of (user, ‘item’, time; rating) where ‘item’ indicates ‘movie’ for MovieLens and Netflix, and

‘business’ for Yelp. We use (movie, genre) and (movie, year) as coupled matrices for Movie-

Lens and Netflix, respectively. We use (user, user) friendship matrix, (business, category) and

(business, city) matrices for Yelp. Particularly for scalability experiments, we generate 3-mode

synthetic random tensors with dimensionality I and corresponding coupled matrices to

observe speed property while size is varying. We vary I in the range of 1K*100M and

the number of tensor entries in the range of 1K*100M. We set the number of entries as

jOYj ¼
1

10
jOXj for synthetic coupled matrices. We generated observed indices randomly, and

their entries to follow uniform random distribution between 0 and 1.

Table 4. Summary of the data used for experiments. ‘K’ means thousand, and ‘M’ million. Tensors and matrices of density 1 are fully observed.

Name Data Dimensionality # entries Density

MovieLens User-Movie-Time 71K-11K-157 10M *10−4

Movie-Genre 20 214K 1

Netflix User-Movie-Time 480K-18K-74 100M *10−4

Movie-Yearmonth 110 2M 1

Yelp User-Business-Time 1M-144K-149 4M *10−7

User-User 1M 7M *10−4

Business-Category 1K 172M 1

Business-City 1K 126M 1

Synthetic 3-mode tensor 1K*100M 1K*100M 10−20 to −3

Matrix 1K*100M 1K*100M 10−11 to −4

https://doi.org/10.1371/journal.pone.0217316.t004

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 13 / 20

https://datalab.snu.ac.kr/S3CMTF
https://datalab.snu.ac.kr/S3CMTF
http://grouplens.org/datasets/movielens/10m
http://www.netflixprize.com
http://www.netflixprize.com
http://www.yelp.com/dataset_challenge
https://doi.org/10.1371/journal.pone.0217316.t004
https://doi.org/10.1371/journal.pone.0217316

Measure. We use test RMSE as the measure for tensor reconstruction error.

test RMSE ¼
ffi

1

jOtestj

X

8a2Otest

ðxa � ~xaÞ
2

s

where Otest is the index set of the test data tensor, xα stands for each test tensor entry, and ~xa is

the corresponding reconstructed value.

Methods. For fair comparison, we compare single core run of S3CMTF-base and

S3CMTF-opt with other single machine CMTF methods: CMTF-Tucker-ALS and CMTF-OPT

(described in Section). To examine multi-core performance, we run two versions of S3CMTF-

opt: S3CMTF-opt1 (1 core), and S3CMTF-opt20 (20 cores). We exclude distributed CMTF

methods [25, 26, 28] since they are designed for Hadoop with multiple machines, and thus

take too much time for single machine environment. For example, [17] reported that HaTen2

[26] takes 10,700s to decompose 4-way tensor with I = 10K and jOXj ¼ 100K, which is almost

7,000× slower than our single machine implementation of S3CMTF-opt. For CMTF-Tucker-

ALS, we implemented a C++ version based on Tucker-MET [20], and for CMTF-OPT, we

implemented a C++ version of CMTF-OPT [12]. Our implementation for CMTF-OPT solves

Eq (6) by sparse matrix operations. We implement S3CMTF with C++. For all of our C++

implementations, we used C++11 with O2 flag. We used Armadillo 7.700 with LAPACK 3.7.0

and BLAS 3.7.0 for matrix operations such as eigenvector calculations. We used OpenMP 4.0

library for multi-core parallelization of S3CMTF.

We conduct all experiments on a machine equipped with Intel Xeon E5-2630 v4 2.2GHz

CPU and 256GB RAM. We mark out-of-memory (O.O.M.) error when the memory usage

exceeds the limit.

Hyperparameters. We set pre-defined hyperparameters that resulted in the best recon-

struction error on a 10% validation set by random grid search: tensor rank J, regularization

factor λreg, λm, the initial learning rate η0, and decay rate μ. We set λreg to 0.1, λm = 10, and μ =

0.1 for all datasets. For rank and initial learning rate, MovieLens: J = 12, η = 0.001, Netflix:

J = 11, η = 0.001, and Yelp: J = 10, η = 0.0005. For synthetic datasets, we use J = 10 for all

experiments.

Performance of S3CMTF

We observe the performance of S3CMTF to answer Q1. As seen in Figs 1B and 4, S3CMTF

converges faster to the optimum with the lowest test error than existing methods with the fol-

lowing details.

Accuracy. We divide each data tensor into 80%/20% for train/test sets. Specifically, 80%

of the tensor entries are regarded as the train set and remaining 20% as the test set. The lower

error for a same elapsed time implies the better accuracy and faster convergence. Figs 1B and 4

show the changes of test RMSE of each method on three datasets over elapsed time which are

the answers for Q1. S3CMTF achieves the lowest error compared to others for the same elapsed

time. For Yelp, CMTF-Tucker-ALS yielded an O.O.M. error. S3CMTF-opt20 achieves the low-

est error 1.253, 0.9147, and 0.8037 while the best competing method, CMFT-OPT, gives the

error 1.370, 1.018, and 0.8125 for Yelp, Netflix, and MovieLens datasets, respectively. Note that

the competing method CMFT-Tucker-ALS gives either an out of memory error or results in

the highest error rate.

Running time. We compare our method with the multi-core version of SALS-single [30],

a parallel CP decomposition algorithm, to demonstrate the high performance of S3CMTF

compared to the state-of-the-art decomposition algorithms. We used non-coupled CP version

of our method, S3CMTF-CP-opt, by setting G to be hyper-diagonal and not coupling any

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 14 / 20

https://doi.org/10.1371/journal.pone.0217316

matrices. Fig 5 shows that S3CMTF is better than SALS-single in terms of both error and time

for MovieLens dataset. S3CMTF-TUCKER explicitly denotes S3CMTF-opt for Tucker model.

Scalability analysis

We present scalability of our proposed S3CMTF and competitors to answer Q2, in terms of

two aspects: data scalability and parallel scalability. We use synthetic data of varying size for

evaluation. As a result, we show the running time (for one iteration) of S3CMTF follows our

theoretical analysis in Section.

Data scalability. The time complexity of CMTF-Tucker-ALS and CMTF-OPT have

OðNIN� 1J2Þ and OðNIN� 1JÞ as their dominant terms, respectively. In contrast, S3CMTF

exploits the sparsity of input data, and has the time complexity linear to the number of entries

(jOXj, |OY|) and is independent of the dimensionality (I) as shown in Lemma 4. Figs 1A and

6A show that the running time (for one iteration) of S3CMTF on real world data sets follows

our theoretical analysis in Section. First, we fix jOXj to 1M and |OY| to 100K, and vary

dimensionality I from 1K to 100M. Fig 1A shows the running time (for one iteration) of all

methods with J = 10. Note that all of our proposed methods achieve constant running time as

Fig 4. Test RMSE of S3CMTF and other CMTF methods over iterations. S3CMTF-opt20 shows the best convergence

rate and accuracy.

https://doi.org/10.1371/journal.pone.0217316.g004

Fig 5. Comparison with SALS-single for movieLens dataset. We compare two non-coupled version of S3CMTF,

S3CMTF-CP-opt and S3CMTF-TUCKER-opt with the parallel CP decomposition method, SALS-single. For (a), we set

1 mark per 20 iterations for clarity. (a) S3CMTF converges faster to a lower error than SALS does. (b) S3CMTF-CP-opt

is 2.3× faster than SALS-single.

https://doi.org/10.1371/journal.pone.0217316.g005

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 15 / 20

https://doi.org/10.1371/journal.pone.0217316.g004
https://doi.org/10.1371/journal.pone.0217316.g005
https://doi.org/10.1371/journal.pone.0217316

dimensionality increases because they exploit the sparsity of data by updating factors related to

only observed data entries. However, CMTF-Tucker-ALS and CMTF-OPT show exponentially

increasing running time, and CMTF-OPT shows O.O.M. when I = 10M. Next, we investigate

the data scalability over the number of entries as shown in Fig 6A. We fix I to 10K and raise

jOXj from 10K to 100M. CMTF-Tucker-ALS shows O.O.M. when jOXj ¼ 100M, and

CMTF-OPT shows near-linear scalability. Focusing on the results of S3CMTF, all three ver-

sions of our approach show linear relation between running time and jOXj.

Parallel scalability. We conduct experiments to examine parallel scalability of S3CMTF

on shared memory systems. For measurement, we define speed up as (iteration time on 1 core)/
(iteration time). Fig 6B shows the linear speed up of S3CMTF-base and S3CMTF-opt. The slope

of the parallel scalability curve is not one (perfectly parallelizable) since the growing number of

cores leads to the concurrent read accesses to memory, which leads to conflicts. S3CMTF-opt

shows higher speed up than S3CMTF-base because it reduces reading accesses for core tensor

by utilizing intermediate data.

Discovery

In this section, we use S3CMTF for mining real-world data, Yelp, to answer the question Q3 in

the beginning of the previous section. First, we demonstrate that S3CMTF has better discern-

ment for business entities compared to the naive decomposition method by jointly capturing

spatial and categorical prior knowledge. Second, we show how S3CMTF is possibly applied to

the real recommender systems. It is an open challenge to jointly capture the spatio-temporal

context along with user preference data [35]. We exemplify a personal recommendation for a

specific user. For discovery, we use the total Yelp data tensor along with coupled matrices as

explained in Table 4. For better interpretability, we found a non-negative factorization by

applying projected gradient method [36]. An orthogonality condition is not imposed to keep

non-negativity, and each column of factors is normalized.

Discovery

First, we compare discernment by S3CMTF and the Tucker decomposition. We use the busi-

ness factor U(2). Fig 7A shows the gap statistic values of clustering business entities with k-

means clustering algorithm. Gap statistic is a theoretical tool to measure separability between

k-means clusters [37]. A higher gap statistic means higher separability between clusters.

S3CMTF shows higher gap statistic values compared to the Tucker decomposition which

Fig 6. Comparison of scalability. (a) S3CMTF shows linear scalability as the number of entries increases. (b)

S3CMTF-base and S3CMTF-opt show linear speed up as the number of cores grows. O.O.M.: out of memory error.

https://doi.org/10.1371/journal.pone.0217316.g006

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 16 / 20

https://doi.org/10.1371/journal.pone.0217316.g006
https://doi.org/10.1371/journal.pone.0217316

means S3CMTF outperforms the naive Tucker decomposition for entity clustering with respect

to the gap statistic.

As the difference between S3CMTF and the Tucker decomposition is in the existence of

coupled matrices, the high performance of S3CMTF is attributed to the unified factorization

using spatial and categorical data as prior knowledge. Table 5 shows the found clusters of busi-

ness entities. Note that each cluster represents a certain combination of spatial and categorical

characteristics of business entities.

User-specific recommendation

Commercial recommendations are one of the most important applications of factorization

models [4, 9]. Here we illustrate how factor matrices are used for personalized recommenda-

tions with a real example. Fig 7B shows the process for recommendation. Below, we illustrate

the process in detail.

Fig 7. (a) Gap statistics on U(2) of S3CMTF and the Tucker decomposition for Yelp dataset. S3CMTF outperforms the naive Tucker decomposition for its clustering

ability. (b) Visualization of the personal recommendation scenario.

https://doi.org/10.1371/journal.pone.0217316.g007

Table 5. Clustering results on business factor U(2) found by S3CMTF. We found dominant spatial and categorical

characteristics from each cluster. Businesses in a same cluster tend to be in adjacent cities and are included in similar

categories.

Cluster Location / Category Top-10 Businesses

C1 Las Vegas, US/ Travel &

Entertainment

Nocturnal Tours, Eureka Casino, Happi Inn, Planet Hollywood Poker

Room, Circus Midway Arcade, etc.

C2 Arizona, US/ Real estate &

Home services

ENMAR Hardwood Flooring, Sprinkler Dude LLC, Eklund Refrigeration,

NR Quality Handyman, The Daniel Montez Real Estate Group, etc.

C11 Ontario, Canada/ Restaurants

& Deserts

Jyuban Ramen House, Tim Hortons, Captain John Donlands Fish and

Chips, Cora’s Breakfast & Lunch, Pho Pad Thai, etc.

C17 Ohio, US/ Food & Drinks ALDI, Pulp Juice and Smoothie Bar, One Barrel Brewing, Wok N Roll

Food Truck, Gas Pump Coffee Company, etc.

https://doi.org/10.1371/journal.pone.0217316.t005

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 17 / 20

https://doi.org/10.1371/journal.pone.0217316.g007
https://doi.org/10.1371/journal.pone.0217316.t005
https://doi.org/10.1371/journal.pone.0217316

• An example user Tyler has a factor vector u, namely user profile, which has been calculated

by previous review histories.

• We then calculate the personalized profile matrix R ¼ G�1uð2 R
J2�J3Þ. R measures the

amount of interaction of user profile with business and time factors.

• Norm values of rows in R indicate the influence of latent business concepts on Tyler. Domi-

nant and weak concepts are found based on the calculated norm values. In the example, B4

is the dominant, and B7 is the weak latent concept.

• We inspect the corresponding columns of business factor matrix U(2) and find relevant busi-

ness entities with high values for the found concepts (B4 and B7).

We found both strong and weak entities by the above process. The strong and weak entities

provide recommendation information by themselves in the sense that the probability of the

user to like strong and weak entities are high and low, respectively, and they also give extended

user preference information. For example, strong entities for Tyler are related to ‘spa & health’

and located in neighborhood cities of Arizona, US. Weak entities are related to ‘grill & restau-

rants’ and located in Toronto, Canada. The captured user preference information potentially

makes commercial recommender systems interpretable with additional user-specific informa-

tion such as address, current location among others.

Conclusion

We propose S3CMTF, a fast, accurate, and scalable CMTF method. S3CMTF provides up to

930× faster running times and the best accuracy by sparse CMTF with carefully derived update

rules, lock-free parallel SGD, and reusing intermediate computation results. S3CMTF shows

linear scalability for the number of data entries and parallel cores. Moreover, we show the use-

fulness of S3CMTF for cluster analysis and recommendation by applying S3CMTF to real-

world Yelp data. For future improvements, applying recent achievements in the literature to

improve CP gradient algorithm [38, 39] to our method is possible. Also, future works include

extending the method to a distributed setting.

Author Contributions

Conceptualization: Dongjin Choi, U Kang.

Data curation: Dongjin Choi.

Formal analysis: Dongjin Choi.

Funding acquisition: U Kang.

Investigation: Dongjin Choi, U Kang.

Methodology: Dongjin Choi, U Kang.

Project administration: U Kang.

Resources: U Kang.

Software: Dongjin Choi.

Supervision: U Kang.

Validation: Dongjin Choi, Jun-Gi Jang, U Kang.

Visualization: Dongjin Choi.

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 18 / 20

https://doi.org/10.1371/journal.pone.0217316

Writing – original draft: Dongjin Choi, Jun-Gi Jang.

Writing – review & editing: Dongjin Choi, U Kang.

References
1. Park N, Jeon B, Lee J, Kang U. BIGtensor: Mining Billion-Scale Tensor Made Easy. In: Proceedings of

the International Conference on Information and Knowledge Management. ACM; 2016.

2. Park N, Oh S, Kang U. Fast and Scalable Distributed Boolean Tensor Factorization. In: Data Engineer-

ing (ICDE), 2017 IEEE 33rd International Conference on. IEEE; 2017. p. 1071–1082.

3. Oh S, Park N, Sael L, Kang U. Scalable Tucker Factorization for Sparse Tensors—Algorithms and Dis-

coveries. In: Data Engineering (ICDE), 2018 IEEE 34th International Conference on. IEEE; 2018.

p. 1120–1131.

4. Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer.

2009; 42(8). https://doi.org/10.1109/MC.2009.263

5. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM review. 2009; 51(3):455–500.

https://doi.org/10.1137/07070111X

6. Ding C, Li T, Peng W. On the equivalence between non-negative matrix factorization and probabilistic

latent semantic indexing. Computational Statistics & Data Analysis. 2008; 52(8):3913–3927. https://doi.

org/10.1016/j.csda.2008.01.011

7. Peng W, Li T. On the equivalence between nonnegative tensor factorization and tensorial probabilistic

latent semantic analysis. Applied Intelligence. 2011; 35(2):285–295. https://doi.org/10.1007/s10489-

010-0220-9

8. Xu W, Liu X, Gong Y. Document clustering based on non-negative matrix factorization. In: Proceedings

of the 26th annual international ACM SIGIR conference on Research and development in informaion

retrieval. ACM; 2003. p. 267–273.

9. Karatzoglou A, Amatriain X, Baltrunas L, Oliver N. Multiverse recommendation: n-dimensional tensor

factorization for context-aware collaborative filtering. In: Proceedings of the fourth ACM conference on

Recommender systems. ACM; 2010. p. 79–86.

10. Rendle S, Schmidt-Thieme L. Pairwise interaction tensor factorization for personalized tag recommen-

dation. In: Proceedings of the third ACM international conference on Web search and data mining.

ACM; 2010. p. 81–90.

11. Sael L, Jeon I, Kang U. Scalable tensor mining. Big Data Research. 2015; 2(2):82–86. https://doi.org/

10.1016/j.bdr.2015.01.004

12. Acar E, Kolda TG, Dunlavy DM. All-at-once optimization for coupled matrix and tensor factorizations.

arXiv preprint arXiv:11053422. 2011.

13. Acar E, Rasmussen MA, Savorani F, Næs T, Bro R. Understanding data fusion within the framework of

coupled matrix and tensor factorizations. Chemometrics and Intelligent Laboratory Systems. 2013;

129:53–63. https://doi.org/10.1016/j.chemolab.2013.06.006

14. Narita A, Hayashi K, Tomioka R, Kashima H. Tensor factorization using auxiliary information. Data Min-

ing and Knowledge Discovery. 2012; 25(2):298–324. https://doi.org/10.1007/s10618-012-0280-z

15. Ozcaglar C. Algorithmic data fusion methods for tuberculosis. Rensselaer Polytechnic Institute; 2012.

16. Tucker LR. Some mathematical notes on three-mode factor analysis. Psychometrika. 1966; 31(3):279–

311. https://doi.org/10.1007/BF02289464 PMID: 5221127

17. Oh J, Shin K, Papalexakis EE, Faloutsos C, Yu H. S-HOT: Scalable High-Order Tucker Decomposition.

In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. ACM;

2017. p. 761–770.

18. Hitchcock FL. The expression of a tensor or a polyadic as a sum of products. Studies in Applied Mathe-

matics. 1927; 6(1-4):164–189.

19. Sorber L, Van Barel M, De Lathauwer L. Structured data fusion. IEEE Journal of Selected Topics in Sig-

nal Processing. 2015; 9(4):586–600. https://doi.org/10.1109/JSTSP.2015.2400415

20. Kolda TG, Sun J. Scalable tensor decompositions for multi-aspect data mining. In: Data Mining, 2008.

ICDM’08. Eighth IEEE International Conference on. IEEE; 2008. p. 363–372.

21. De Lathauwer L, De Moor B, Vandewalle J. On the best rank-1 and rank-(r 1, r 2,. . ., rn) approximation

of higher-order tensors. SIAM journal on Matrix Analysis and Applications. 2000; 21(4):1324–1342.

https://doi.org/10.1137/S0895479898346995

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 19 / 20

https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1137/07070111X
https://doi.org/10.1016/j.csda.2008.01.011
https://doi.org/10.1016/j.csda.2008.01.011
https://doi.org/10.1007/s10489-010-0220-9
https://doi.org/10.1007/s10489-010-0220-9
https://doi.org/10.1016/j.bdr.2015.01.004
https://doi.org/10.1016/j.bdr.2015.01.004
https://doi.org/10.1016/j.chemolab.2013.06.006
https://doi.org/10.1007/s10618-012-0280-z
https://doi.org/10.1007/BF02289464
http://www.ncbi.nlm.nih.gov/pubmed/5221127
https://doi.org/10.1109/JSTSP.2015.2400415
https://doi.org/10.1137/S0895479898346995
https://doi.org/10.1371/journal.pone.0217316

22. Ermiş B, Acar E, Cemgil AT. Link prediction in heterogeneous data via generalized coupled tensor fac-

torization. Data Mining and Knowledge Discovery. 2015; 29(1):203–236. https://doi.org/10.1007/

s10618-013-0341-y

23. Yılmaz KY, Cemgil AT, Simsekli U. Generalised coupled tensor factorisation. In: Advances in neural

information processing systems; 2011. p. 2151–2159.

24. Khan SA, Leppäaho E, Kaski S. Bayesian multi-tensor factorization. Machine Learning. 2016;

105(2):233–253. https://doi.org/10.1007/s10994-016-5563-y

25. Jeon B, Jeon I, Sael L, Kang U. Scout: Scalable coupled matrix-tensor factorization-algorithm and dis-

coveries. In: Data Engineering (ICDE), 2016 IEEE 32nd International Conference on. IEEE; 2016.

p. 811–822.

26. Jeon I, Papalexakis EE, Kang U, Faloutsos C. Haten2: Billion-scale tensor decompositions. In: Data

Engineering (ICDE), 2015 IEEE 31st International Conference on. IEEE; 2015. p. 1047–1058.

27. Papalexakis EE, Faloutsos C, Mitchell TM, Talukdar PP, Sidiropoulos ND, Murphy B. Turbo-smt: Accel-

erating coupled sparse matrix-tensor factorizations by 200x. In: Proceedings of the 2014 SIAM Interna-

tional Conference on Data Mining. SIAM; 2014. p. 118–126.

28. Beutel A, Talukdar PP, Kumar A, Faloutsos C, Papalexakis EE, Xing EP. Flexifact: Scalable flexible fac-

torization of coupled tensors on hadoop. In: Proceedings of the 2014 SIAM International Conference on

Data Mining. SIAM; 2014. p. 109–117.

29. Jeon I, Papalexakis EE, Faloutsos C, Sael L, Kang U. Mining billion-scale tensors: algorithms and dis-

coveries. The VLDB Journal. 2016; 25(4):519–544. https://doi.org/10.1007/s00778-016-0427-4

30. Shin K, Sael L, Kang U. Fully scalable methods for distributed tensor factorization. IEEE Transactions

on Knowledge and Data Engineering. 2017; 29(1):100–113. https://doi.org/10.1109/TKDE.2016.

2610420

31. Bradley JK, Kyrola A, Bickson D, Guestrin C. Parallel coordinate descent for l1-regularized loss minimi-

zation. arXiv preprint arXiv:11055379. 2011.

32. Recht B, Re C, Wright S, Niu F. Hogwild: A lock-free approach to parallelizing stochastic gradient

descent. In: Advances in neural information processing systems; 2011. p. 693–701.

33. Bottou L. Stochastic gradient descent tricks. In: Neural networks: Tricks of the trade. Springer; 2012. p.

421–436.

34. Bader BW, Kolda TG. Efficient MATLAB computations with sparse and factored tensors. SIAM Journal

on Scientific Computing. 2007; 30(1):205–231. https://doi.org/10.1137/060676489

35. Gao H, Tang J, Hu X, Liu H. Exploring temporal effects for location recommendation on location-based

social networks. In: Proceedings of the 7th ACM conference on Recommender systems. ACM; 2013.

p. 93–100.

36. Lin CJ. Projected gradient methods for nonnegative matrix factorization. Neural computation. 2007; 19

(10):2756–2779. https://doi.org/10.1162/neco.2007.19.10.2756 PMID: 17716011

37. Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic.

Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2001; 63(2):411–423.

https://doi.org/10.1111/1467-9868.00293

38. Vannieuwenhoven N, Meerbergen K, Vandebril R. Computing the gradient in optimization algorithms

for the CP decomposition in constant memory through tensor blocking. SIAM Journal on Scientific Com-

puting. 2015; 37(3):C415–C438. https://doi.org/10.1137/14097968X

39. Phan AH, Tichavskỳ P, Cichocki A. Fast alternating LS algorithms for high order CANDECOMP/PAR-

AFAC tensor factorizations. IEEE Transactions on Signal Processing. 2013; 61(19):4834–4846. https://

doi.org/10.1109/TSP.2013.2269903

S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217316 June 28, 2019 20 / 20

https://doi.org/10.1007/s10618-013-0341-y
https://doi.org/10.1007/s10618-013-0341-y
https://doi.org/10.1007/s10994-016-5563-y
https://doi.org/10.1007/s00778-016-0427-4
https://doi.org/10.1109/TKDE.2016.2610420
https://doi.org/10.1109/TKDE.2016.2610420
https://doi.org/10.1137/060676489
https://doi.org/10.1162/neco.2007.19.10.2756
http://www.ncbi.nlm.nih.gov/pubmed/17716011
https://doi.org/10.1111/1467-9868.00293
https://doi.org/10.1137/14097968X
https://doi.org/10.1109/TSP.2013.2269903
https://doi.org/10.1109/TSP.2013.2269903
https://doi.org/10.1371/journal.pone.0217316

