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Abstract—Given large-scale multi-dimensional data (e.g., (user, movie, time; rating) for movie recommendations), how can we extract
latent concepts/relations of such data? Tensor factorization has been widely used to solve such problems with multi-dimensional data,
which are modeled as tensors. However, most tensor factorization algorithms exhibit limited scalability and speed since they require
huge memory and heavy computational costs while updating factor matrices. In this paper, we propose GTA, a general framework for
Tucker factorization on heterogeneous platforms. GTA performs alternating least squares with a row-wise update rule in a fully parallel
way, which significantly reduces memory requirements for updating factor matrices. Furthermore, GTA provides two algorithms:
GTA-PART for partially observable tensors and GTA-FULL for fully observable tensors, both of which accelerate the update process
using GPUs and CPUs. Experimental results show that GTA exhibits 5.6 ∼ 44.6× speed-up for large-scale tensors compared to the
state-of-the-art. In addition, GTA scales near linearly with the number of GPUs and computing nodes used for experiments.
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1 INTRODUCTION

G IVEN large-scale tensors, how can we discover latent
concepts/relations of them? How can we design a

time-efficient algorithm for analyzing given tensors? Vari-
ous real-world data can be modeled as tensors or multi-
dimensional arrays (e.g., (user, movie, time; rating) for
movie recommendations). Tensors are classified into two
types: partially observable ones (typically sparse) or fully
observable ones (dense). Partially observable tensors con-
sist of observable and missing entries (whose values are
unknown); however, there are no missing entries for fully
observable ones (consist of nonzero- and zero-value entries).
Tensor factorization has been widely used for analyzing
tensors [1], [2], [3]. Among tensor factorization methods [4],
Tucker factorization has received much interest since it is a
generalized form of other factorization methods like CAN-
DECOMP/PARAFAC (CP) decomposition, and it allows us
to examine latent factors and hidden relations of a tensor.

While many algorithms have been developed for Tucker
factorization [5], [6], [7], [8], most methods exhibit limited
scalability since they exploit tensor operations and singular
value decomposition (SVD), leading to heavy memory and
computational requirements. In particular, tensor operations
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TABLE 1: Summary of our proposed method GTA and com-
petitors. A check-mark of a method indicates that the algorithm
is satisfying a particular aspect. GTA is the only method scal-
able with all aspects of tensor scale, factorization speed, GPU
applicability, and generality; on the other hand, competitors
have limited scalability for some aspects.

Method Scale Speed GPU Type of Tensors

SPLATT X Fully Observed
P-TUCKER X Partially Observed

GTA
GTA-PART X X X Partially Observed
GTA-FULL X X X Fully Observed

generate huge intermediate data for large-scale tensors,
which is a problem called intermediate data explosion [9].
Moreover, they are not suitable for decomposing large-scale
tensors due to their limited speed. Although several parallel
Tucker methods have been developed to address the perfor-
mance issue, they do not meet the maximum parallelization
efficiency as they are executed in central processing units
(CPUs) with a relatively small number of cores. A few
Tucker algorithms [10], [11], [12], [13] have been developed
to address the above problems, but they fail to solve the
scalability and performance issues at the same time. In
summary, the major challenges for decomposing large-scale
tensors are 1) how to avoid intermediate data explosion and
high computational costs caused by tensor operations and
SVD, and 2) how to achieve massive parallelism during the
factorization process for better performance.

In this paper, we propose GTA, a general framework
for Tucker factorization on heterogeneous platforms. GTA
performs alternating least squares (ALS) with a row-wise
update rule. The row-wise updates considerably reduce
the amount of memory required for updating factor ma-
trices, enabling GTA to avoid the intermediate data explo-
sion problem. In addition, GTA maximizes parallelization
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efficiency by employing graphics processing units (GPUs)
for overcoming a computational bottleneck, while less-
computational parts are processed by CPUs. GTA consists
of two algorithms: GTA-PART for partially observable ten-
sors and GTA-FULL for fully observable tensors. The main
idea of GTA-PART is to compute intermediate data δ(n)

by GPUs, and GTA-FULL is an extension of GTA-PART
to fully observable tensors with a factorization technique.
Table 1 summarizes a comparison of GTA and competitors
regarding various aspects.

Our main contributions are the following:
• Algorithm. We propose GTA, a general framework for

Tucker factorization on heterogeneous platforms. The
key ideas of GTA are 1) a row-wise update rule of factor
matrices, 2) nonzero-based parallelization on GPUs for
computing intermediate data δ, and 3) a factorization
technique for fully observable Tucker factorization.

• Theory. We theoretically derive a row-wise update
rule of factor matrices and prove the correctness and
convergence of it. Moreover, we analyze the time and
memory complexities of GTA and other methods, as
summarized in Table 4.

• Performance. GTA provides the best performance
across all aspects: tensor scale, factorization speed,
GPU applicability, and generality. Experimental results
demonstrate that GTA achieves 5.6 ∼ 44.6× speed-up
for large-scale tensors, as summarized in Figures 5 to 8.

The source code of GTA and datasets used in this pa-
per are publicly available at https://github.com/sejoonoh/
GTA-Tensor for reproducibility. The rest of this paper is
organized as follows. Section 2 explains preliminaries on a
tensor, its operations and factorizations, and heterogeneous
computing with OPENCL and SNUCL. Section 3 describes
our proposed method GTA. Section 4 presents experimental
results of GTA and other methods. After introducing related
works in Section 5, we conclude in Section 6.

2 NOTATIONS AND PRELIMINARIES

In this section, we describe the preliminaries of a tensor
in Section 2.1, its operations in Section 2.2, its factorization
methods in Section 2.3, and heterogeneous computing with
OPENCL and SNUCL in Section 2.4. Notations and defini-
tions are summarized in Table 2.

2.1 Tensor

Tensors, or multi-dimensional arrays, are a generalization
of vectors (1-order tensors) and matrices (2-order tensors)
to higher orders. As a matrix has rows and columns, an
N -order tensor has N modes; their lengths (also called
dimensionalities) are denoted by I1 through IN , respec-
tively. We denote tensors by boldface Euler script letters
(e.g., X), matrices by boldface capitals (e.g., A), and vectors
by boldface lowercases (e.g., a). An element of a tensor is
denoted by the symbolic name of the tensor with its indices
in subscript. For example, ai1j1 indicates the (i1, j1)th entry
of A, and X(i1,...,iN ) denotes the (i1, ..., iN )th entry of X.
The i1th row of A is denoted by ai1:, and the i2th column
of A is denoted by a:i2 .

TABLE 2: Table of symbols.

Symbol Definition

X input tensor (∈ RI1×...×IN )
G core tensor (∈ RJ1×...×JN )
N order of X

In, Jn dimensionality of the nth mode of X and G

A(n) nth factor matrix (∈ RIn×Jn)

a
(n)
injn

(in, jn)th entry of A(n)

Ω set of observable or nonzero-value entries of X
Ω

(n)
in

set of observable entries whose nth mode’s index
is in

|Ω|, |G| number of observable entries of X and G
λ regularization parameter for factor matrices
‖X‖ Frobenius norm of tensor X
M(n) an intermediate table for computing B(n)

T1 number of CPU cores
T2 number of GPU cores
α an element (i1, ..., iN ) of input tensor X
β an element (j1, ..., jN ) of core tensor G

2.2 Tensor Operations
We review some tensor operations used for Tucker factor-
ization. More tensor operations are summarized in [4].
Definition 1 (Frobenius Norm). Given an N-order tensor X

(∈ RI1×...×IN ), the Frobenius norm of X is denoted by
||X|| and defined as follows:

||X|| =
√ ∑
∀(i1,...,iN )∈X

X2
(i1,...,iN ). (1)

Definition 2 (Matricization/Unfolding). Matricization trans-
forms a tensor into a matrix. The mode-n matricization
of a tensor X ∈ RI1×I2×···×IN is denoted as X(n). The
mapping from an element (i1, ..., iN ) of X to an element
(in, j) of X(n) is given as follows:

j = 1 +
N∑

k=1,k 6=n

[
(ik − 1)

k−1∏
m=1,m 6=n

Im

]
. (2)

Note that all indices of a tensor and a matrix begin from
1.

Definition 3 (n-Mode Product). n-mode product enables
multiplications between a tensor and a matrix. The n-
mode product of a tensor X ∈ RI1×I2×···×IN with
a matrix U ∈ RJn×In is denoted by X ×n U (∈
RI1×···×In−1×Jn×In+1×···×IN ). Element-wise, we have

(X×n U)i1···in−1jnin+1···iN =
In∑
in=1

(X(i1i2···iN )ujnin).

(3)

2.3 Tensor Factorization Methods
Our proposed method GTA is based on Tucker factoriza-
tion, one of the most popular decomposition methods. More
details about other factorization algorithms are summarized
in Section 5.
Definition 4 (Tucker Factorization). Given an N-order ten-

sor X (∈ RI1×...×IN ), Tucker factorization approximates
X by a core tensor G (∈ RJ1×...×JN ) and factor matrices

https://github.com/sejoonoh/GTA-Tensor
https://github.com/sejoonoh/GTA-Tensor
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Fig. 1: Tucker factorization for a 3-way tensor.

{A(n) ∈ RIn×Jn |n = 1...N}. Figure 1 illustrates a Tucker
factorization result for a 3-way tensor. Core tensor G is
assumed to be smaller and denser than the input tensor
X, and factor matrices A(n) to be normally orthogonal.
Regarding interpretations of factorization results, each
factor matrix A(n) represents the latent features of the
object related to the nth mode of X, and each element
of a core tensor G indicates the weights of the relations
composed of columns of factor matrices. Tucker factor-
ization with tensor operations is presented as follows:

min
G,A(1),...,A(N)

||X− G×1 A
(1) · · · ×N A(N)||. (4)

An element-wise expression is given as follows:

X(i1,...,iN ) ≈
∑

∀(j1,...,jN )∈G

G(j1,...,jN )

N∏
n=1

a
(n)
injn

. (5)

Definition 5 (Partially Observable Tucker Factorization).
Given a tensor X (∈ RI1×...×IN ) with observable en-

tries Ω, the goal of partially observable Tucker factor-
ization (POTF) of X is to find factor matrices A(n)

(∈ RIn×Jn , n = 1, · · · , N) and a core tensor G (∈
RJ1×...×JN ), which minimize (6).

L(G,A(1), ...,A(N)) =

∑
∀α∈Ω

Xα −
∑
∀β∈G

Gβ

N∏
n=1

a
(n)
injn

2

+ λ
N∑
n=1

‖A(n)‖
2

(6)

Note that the loss function (6) only depends on observable
entries of X, and L2 regularization is used in (6) to prevent
overfitting, which has been generally utilized in machine
learning problems. We note that Frobenius norm for such
regularization is broadly utilized [14], [15], [16]. α and β
indicate entries of tensor X and G, respectively.
Definition 6 (Fully Observable Tucker Factorization).

Given a tensor X (∈ RI1×...×IN ) with nonzero-value
entries Ω, the goal of fully observable Tucker factor-
ization (FOTF) of X is to find factor matrices A(n)

(∈ RIn×Jn , n = 1, · · · , N) and a core tensor G (∈
RJ1×...×JN ), which minimize (7).

L(G,A(1), ...,A(N)) =

∑
∀α∈Ω

Xα −
∑
∀β∈G

Gβ

N∏
n=1

a
(n)
injn

2

+
∑
∀α/∈Ω

∑
∀β∈G

Gβ

N∏
n=1

a
(n)
injn

2

+ λ
N∑
n=1

‖A(n)‖
2

(7)

Note that there is an additional term (second term in
(7)) for zero-value entries in the loss function compared to
(6), which contributes to increasing the time complexity of
FOTF.
Definition 7 (Alternating Least Squares). To minimize the

loss functions (6) and (7), an alternating least squares
(ALS) technique is widely used [4], which updates a
factor matrix or a core tensor while keeping all others
fixed.

Algorithm 1: Tucker-ALS

Input : Tensor X ∈ RI1×I2×···×IN , and
core tensor dimensionality J1, ..., JN .

Output: Updated factor matrices A(n) ∈ RIn×Jn
(n = 1, ..., N), and
updated core tensor G ∈ RJ1×J2×···×JN .

1 initialize all factor matrices A(n)

2 repeat
3 for n = 1...N do
4 Y← X×1 A(1)T · · · ×n−1 A(n−1)T ×n+1

A(n+1)T · · · ×N A(N)T

5 A(n) ← Jn leading left singular vectors of Y(n)

6 until the max. iteration or reconstruction error converges;
7 G← X×1 A(1)T · · · ×N A(N)T

Algorithm 1 describes a conventional Tucker factor-
ization based on the ALS, which is called the higher-
order orthogonal iteration (HOOI) (see [4] for details).
The computational and memory bottleneck of Algo-
rithm 1 is updating factor matrices A(n) (lines 4-5),
which requires tensor operations and SVD. Specifically,
Algorithm 1 requires storing a full-dense matrix Y(n),
and the amount of memory needed for storing Y(n) is
O(In

∏
m 6=n Jm). The required memory grows rapidly

when the order, the dimensionality, or the rank of a
tensor increase, and ultimately causes intermediate data
explosion [9]. Moreover, Algorithm 1 computes SVD for
a given Y(n), where the complexity of exact SVD is
O(min(In

∏
m 6=n J

2
m, I

2
n

∏
m 6=n Jm)). The computational

costs for SVD increase rapidly as well for a large-scale
tensor. Notice that Algorithm 1 assumes missing entries
of X as zeros during the update process (lines 4-5),
and core tensor G (line 7) is uniquely determined and
relatively easy to be computed by an input tensor and
factor matrices.
In summary, applying the naive Tucker-ALS algorithm
on sparse tensors generates severe accuracy and scalabil-
ity issues. Therefore, Algorithm 1 needs to be revised to
focus only on observed entries and scale for large-scale
tensors at the same time. In that case, an alternative ALS
approach is applicable to Algorithm 1, which is utilized
for partially observable matrices and CP factorizations.
The alternative ALS approach is discussed in Section 3.

Definition 8 (Intermediate Data). We define intermediate
data as memory requirements for updating A(n) (lines
4-5 in Algorithm 1), excluding memory space for storing
X, G, and A(n). The size of intermediate data plays a
critical role in determining which Tucker factorization
algorithms are space-efficient, as we will discuss in Sec-
tion 3.5.2.
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2.4 Heterogeneous Computing
Heterogeneous computing refers to systems that use more
than one kind of processor or cores. These systems gain per-
formance efficiency by adding dissimilar co-processors [17].
A well-known example of heterogeneous platforms is a
machine with CPUs and GPUs [18]. According to [19],
even a single GPU-CPU framework provides advantages
which multiple CPUs on their own do not offer due to the
specialization in each chip.

OPENCL [20]. How can we write programs executed
well across those heterogeneous platforms? The answer
is using OPENCL, which is a parallel programming stan-
dard for heterogeneous platforms. The key advantages of
OPENCL are 1) its generality that can be applied to various
processors (such as GPUs, DSPs, or FPGAs), and 2) easy-
to-use abstractions and a broad set of programming APIs
for manipulating accelerators. The specification document1

provides detailed information about OPENCL.
SNUCL [21]. OPENCL operates on only a single node.

In order to run OPENCL applications for distributed-GPU
environment, an additional abstraction layer that communi-
cates with OPENCL is needed. SNUCL is a communication
library written in MPI that provides an illusion that all
computing nodes are aggregated to a single node with
multiple processors. SNUCL allows us to run OPENCL
applications implemented for a single node on distributed-
GPU environments without additional implementations.

3 PROPOSED METHODS

In this section, we describe GTA, our generalized Tucker
factorization algorithm on heterogeneous platforms. As de-
scribed in Definition 7, the computational and memory
bottleneck of the standard Tucker-ALS algorithm occurs
while updating factor matrices. Therefore, it is imperative
to update them efficiently in order to maximize speed and
scalability. However, there are several challenges in design-
ing an optimized algorithm for updating factor matrices.

1) Maximize scalability. The aforementioned Tucker-ALS
algorithm suffers from intermediate data explosion and
high computational costs while updating factor ma-
trices. How can we formulate efficient algorithms for
updating factor matrices in terms of time and memory?

2) Exploiting GPUs during factorizations. In order to
fully exploit the performance of GPUs, a target task
ought to be parallelized and computationally intensive.
How can we find and accelerate those GPU-suitable
tasks during updating factor matrices?

3) Avoiding heavy computational costs of fully observ-
able tensor factorization (FOTF). FOTF requires more
computations than those of partially observable one
due to numerous zero-value entries in a loss function.
How can we devise an efficient algorithm for FOTF?

To overcome the above challenges, we suggest the fol-
lowing main ideas, which we describe in later subsections.

1) A row-wise update rule is used for updating factor ma-
trices. The update rule minimizes memory requirement
for intermediate data (Figure 3 and Section 3.2).

1. https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/
OpenCL API.pdf

Fig. 2: An overview of GTA. After initialization, GTA itera-
tively updates factor matrices using CPUs and GPUs. When
reconstruction error converges, GTA makes factor matrices
orthogonal and updates a core tensor by QR factorization.

2) GTA-PART utilizes GPUs for calculating intermediate
data δ by nonzero-based parallelization, while the rest
parts are computed by CPUs (Section 3.3).

3) GTA-FULL also employs GPUs for computing δ as
GTA-PART does and significantly reduces the number
of computations required for FOTF using a factorization
technique with a table M(n) (Section 3.4).

We first suggest an overview of how GTA factorizes
given tensors using Tucker method in Section 3.1. After that,
we describe details of our main ideas in Sections 3.2∼3.4,
and we offer a theoretical analysis of GTA in Section 3.5.

3.1 Overview
Our proposed method GTA consists of GTA-PART and
GTA-FULL which provide a fast and scalable Tucker fac-
torization for partially and fully observable tensors, respec-
tively. GTA-PART extends upon the default version of P-
TUCKER [13] to run on heterogeneous platforms. While P-
TUCKER uses only row-wise parallelization (Section 3.3)
on CPUs, GTA-PART utilizes both row-wise (CPUs) and
nonzero-wise (GPUs) parallelization. GTA-FULL further
extends GTA-PART to efficiently run on fully observable
tensors by reducing heavy computational costs based on
careful reformulation of the optimization function (Sec-
tion 3.4).

Figure 2 and Algorithm 2 describe the main process of
GTA (includes both GTA-PART and GTA-FULL). First,
GTA initializes all A(n) and G with random real values
between 0 and 1 (step 1 and line 1). After that, GTA
iteratively updates factor matrices (steps 2-4 and lines 3-
18; see Section 3.2) When all factor matrices are updated,
GTA measures reconstruction error using (5) on GPUs (step
5 and line 19; more details are given in the Supplementary
Material [22]). GTA stops iterations if the error converges
or the maximum iteration is reached (line 20). Finally, GTA
performs QR decomposition on all A(n) to make them or-
thogonal and updates G (step 6 and lines 21-24). Specifically,
QR decomposition [23] on each A(n) is defined as follows:

https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf
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Algorithm 2: GTA Algorithm
Input : Tensor X ∈ RI1×I2×···×IN ,

factor matrices A(n) ∈ RIn×Jn (n = 1, ..., N), and
core tensor G ∈ RJ1×J2×···×JN .

Output: Updated factor matrices
A(n) ∈ RIn×Jn (n = 1, ..., N) and core tensor
G ∈ RJ1×J2×···×JN .

1 initialize A(n) and G with random values between 0 and 1
2 repeat
3 for n = 1...N do
4 if GTA-FULL then

. Compute an intermediate table M(n)

5 for β = ∀(j1, ..., jN ) ∈ G do . parallel, CPU
6 for γ = ∀(j1, ..., jN ) ∈ G do
7 M(n)[β][γ]←

GβGγ

(∑
∀α∈X(n)

in

∏
k 6=n(a

(k)
αkβk

a
(k)
αkγk )

)

8 calculate B(n) using (12)

. Precompute δ(n) for GTA-PART & GTA-FULL
9 for α = ∀(i1, ..., iN ) ∈ Ω do . parallel, GPU

10 for β = ∀(j1, ..., jN ) ∈ G do
11 δ

(n)
α (jn)← δ

(n)
α (jn) + Gβ

∏
k 6=n a

(k)
ikjk

12 for in = 1...In do . parallel, CPU

13 for α = ∀(i1, ..., iN ) ∈ Ω
(n)
in

do
14 if GTA-PART then
15 calculate B

(n)
in

using (11)

16 calculate c
(n)
in: using (13)

17 find an inverse of [B
(n)
in

+ λIJn ] or [B(n) + λIJn ]

18 update [a
(n)
in1, · · · , a

(n)
inJn

] using (10)

19 calculate reconstruction error on GPUs using (5)
20 until the maximum iteration or ‖X−X′‖ converges;
21 for n = 1...N do
22 A(n) → Q(n)R(n) . QR decomposition
23 A(n) ← Q(n) . Orthogonalize A(n)

24 G← G×n R(n) . Update core tensor G

A(n) = Q(n)R(n), n = 1...N (8)

where Q(n) ∈ RIn×Jn is column-wise orthonormal and R(n) ∈
RJn×Jn is upper-triangular. Therefore, by substituting Q(n)

for A(n), GTA succeeds in making factor matrices orthogo-
nal. Core tensor G must be updated accordingly in order to
maintain the same reconstruction error. According to [24],
the update rule of core tensor G is given as follows:

G← G×1 R
(1) · · · ×N R(N). (9)

3.2 A Row-wise Update Rule of Factor Matrices

GTA updates factor matrices in a row-wise manner based
on ALS. From a high-level point of view, as most ALS
methods do, GTA updates a factor matrix at a time while
maintaining all others fixed. However, when all other matri-
ces are fixed, there are several approaches [14] for updating
a single factor matrix. Among them, GTA selects a row-wise
update method; a key benefit of the row-wise update is that
all rows of a factor matrix are independent of each other in
terms of minimizing the loss functions (Equations (6) and
(7)). This property enables applying multi-core parallelism
on updating factor matrices. Given a row of a factor matrix,

an update rule is derived by computing a gradient with
respect to the given row and setting it to zero, which
minimizes the loss functions (6) and (7). The update rule
for the inth row of A(n) (see Figure 3) is given as follows;
proofs of Equation (10) are provided in Theorems 1 and 2.

[a
(n)
in1, ..., a

(n)
inJn

]← arg min
[a

(n)
in1,...,a

(n)
inJn

]

L(G,A(1), ...,A(N))

= c
(n)
in: × [B

(n)
in

+ λIJn ]−1 (GTA-PART)

or c
(n)
in: × [B(n) + λIJn ]−1 (GTA-FULL)

(10)

where B
(n)
in

is a Jn × Jn matrix whose (j1, j2)th entry is∑
∀α∈Ω

(n)
in

δ(n)
α (j1)δ(n)

α (j2), (11)

B(n) is a Jn × Jn matrix whose (j1, j2)th entry is∑
∀α∈X(n)

in

δ(n)
α (j1)δ(n)

α (j2), (12)

c
(n)
in: is a length Jn vector whose jth entry is∑

∀α∈Ω
(n)
in

Xαδ
(n)
α (j), (13)

δ
(n)
α is a length Jn vector whose jth entry is∑

∀β∈G,βn=j

Gβ
∏
k 6=n

a
(k)
ikjk

, (14)

α and β indicate entries of tensor X and G, respectively.
Ω

(n)
in

or X
(n)
in

indicates the subset of Ω or X whose nth
mode’s index is in, respectively. λ is a regularization pa-
rameter, and IJn is a Jn × Jn identity matrix. As shown
in the update rule (10), GTA-PART and GTA-FULL share
two intermediate data c

(n)
in: and δ

(n)
α , while B

(n)
in

and B(n)

are exclusively used for GTA-PART and GTA-FULL, re-
spectively. The important property is that B

(n)
in

, c(n)
in: , and

δ
(n)
α are computed only by the subset of observable entries

Ω
(n)
in

. Hence, GTA-PART fully exploits the sparsity of given
tensors. In a case of GTA-FULL, naive calculation of B(n)

requires huge computational costs as Equation (12) is calcu-
lated by all entries of a tensor. Thus, GTA-FULL utilizes a
factorization technique to minimize the costs (see Section 3.4
for details).

Lines 3-18 of Algorithm 2 describe how GTA updates
factor matrices. In the case of GTA-FULL, it computes a ta-
ble M(n) used for computing B(n) (lines 4-8; see Section 3.4).
GTA precomputes intermediate data δ(n) by nonzero-based
parallelization on GPUs (lines 9-11; see Section 3.3). Then,
GTA chooses a row a

(n)
in: of a factor matrix A(n) to update

(line 12). After that, GTA-PART computes B
(n)
in

and c
(n)
in:

required for updating a row a
(n)
in: , while GTA-FULL only

calculates c
(n)
in: (lines 13-16). GTA-PART and GTA-FULL

perform a matrix inverse operation on [B
(n)
in

+ λIJn ] and
[B(n) +λIJn ], respectively (line 17). Finally, GTA-PART and
GTA-FULL update a row a

(n)
in: by Equation (10) (line 18).
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Fig. 3: An overview of GTA-PART for updating a factor matrix A(n). GTA-PART first sends required data for computing
intermediate data δ(n) such as X or G from CPU to GPU(s). After that, GTA-PART calculates δ(n) using nonzero-based
parallelization on GPU(s) (δ(n) is computed by all nonzeros of an input tensor X). GTA-PART receives updated δ(n) from
GPU(s) and calculates other intermediate data B(n) and c(n) using precomputed δ(n) on CPUs. Finally, GTA-PART updates a
factor matrix A(n) in a row-wise manner with multiple CPUs. λ is a regularization parameter, and IJn is a Jn×Jn identity matrix.

GTA utilizes GPUs to accelerate computational bottle-
necks; meanwhile, less computational tasks (e.g., updating
a row using (10)) and tasks that are hard to be parallelized
(e.g., computing a matrix inverse) are processed by CPUs.
There are two sections where CPU parallelization is applied
in Algorithm 2. The first section (lines 5-7) is for computing
a table M(n), and the second section (lines 12-18) is for
updating factor matrices in a row-wise manner. For each sec-
tion, GTA carefully distributes tasks to CPUs while main-
taining the independence between them. Furthermore, GTA
utilizes a dynamic scheduling method offered by OpenMP
library [25] to assure that CPU workload is balanced. The
details of how GTA parallelizes each section are given as
follows.

• Section 1: Computing a table M(n). All entries of
M(n) are independent of each other during their up-
dates. Therefore, GTA distributes all entries of M(n)

uniformly to each CPU, and updates them in parallel.
• Section 2: Updating factor matrices. All rows of A(n)

are independent of each other regarding minimizing
the loss functions (6) and (7). Therefore, GTA dis-
tributes all rows uniformly to each CPU, and updates
them in parallel. Since |Ω(n)

in
| differs for each row, the

workload of each CPU may vary considerably. Thus,
GTA employs dynamic scheduling in this part.

3.3 GTA-PART for Partially Observable Tensors

GTA-PART is a GPU-accelerated Tucker factorization
method for partially observable tensors. GTA-PART utilizes
GPUs for calculating intermediate data δ(n) in order to
accelerate the update process. For the other parts that are
less computational (e.g., updating a row a

(n)
in: ) or tricky to be

parallelized (e.g., computing a matrix inverse), GTA-PART
allows CPUs to handle them.

A key idea of GTA-PART is computing intermedi-
ate data δ (computational bottleneck; refer to Proof 4 for
detailed analysis) by massive parallelism with GPUs. As
shown in Equation (14), a vector δ(n)

α corresponds to a single
nonzero 2 (or α) of X. Thus, if we accumulate all δ(n)

α , a
matrix or table δ(n) corresponds to all nonzeros of X. Since
all nonzeros of an input tensor X are independent of each
other in terms of computing δ(n)

α , GTA-PART calculates δ(n)

using nonzero-based parallelization before updating A(n).
The following process describes how GTA-PART utilizes
GPUs for computing intermediate data δ(n).
• 1. Initializing GPU environments: GTA-PART first

compiles GPU kernel codes and initializes OpenCL
variables (e.g., devices, queues, ...) and memory objects.

• 2. CPU→GPU Data Copy: GTA-PART sends tensor X,
factor matrices A(n), core tensor G, and their metadata
to GPUs for computing δ(n) as a form of OpenCL
memory objects. For multi- and distributed-GPU envi-
ronments, GTA-PART equally distributes nonzeros of
a tensor to each GPU.

• 3. Executing GPU Kernel: Each work-group of GPUs
fills out values of δ(n)

α using Equation (14) in parallel
for their allocated nonzeros.

• 4. GPU → CPU Data Copy: For a single-GPU envi-
ronment, GTA-PART receives a fully-computed δ(n)

from the GPU. However, for multi- and distributed-
GPU environments, GTA-PART accumulates all partial
δ(n) from each GPU and builds a complete δ(n).

Figure 3 summarizes how GTA-PART updates a factor

2. We use a term ‘nonzero’ instead of ‘observable entry’ for simplicity.
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matrix A(n) while fixing all the parameters. GTA-PART
first computes intermediate data δ(n) by the above pro-
cedure. Once δ(n) is computed, GTA-PART updates A(n)

using row-wise parallelization on CPUs. Specifically, given
a row a

(n)
in: , GTA-PART calculates B

(n)
in

and c
(n)
in: using pre-

computed δ(n) and updates the given row by Equation (10).
After updating all rows of A(n), GTA-PART iterates the
same procedure for other factor matrices.

In summary, GTA-PART is a heterogeneous computing
algorithm which accelerates the computational bottleneck
by GPUs and handles the rest parts on CPUs.

3.4 GTA-FULL: An Extension of GTA-PART to FOTF

GTA-FULL is a GPU-accelerated algorithm for fully ob-
servable Tucker factorization (FOTF). As GTA-FULL is an
extension of GTA-PART to FOTF, overall process of GTA-
FULL is similar to that of GTA-PART (e.g., exploiting
GPUs for computing δ). The main difference between GTA-
FULL and GTA-PART is that GTA-FULL uses a factoriza-
tion technique to reduce heavy computational costs from
many zero-value entries. Before explaining the technique,
we need to consider the following question: why cannot we
just apply GTA-PART directly to FOTF? The fundamental
problem of applying GTA-PART to FOTF is that computing
intermediate data B

(n)
in

becomes a gigantic computational
bottleneck even with GPUs. Update rules of GTA-FULL for
a

(n)
in: , c(n)

in: , and δ(n)
α are derived the same with those of GTA-

PART when we compute a gradient of the loss function (7).
However, an update rule of GTA-FULL for B

(n)
in

becomes
different from that of GTA-PART, and the equation is given
by the following: B(n) is a Jn × Jn matrix whose (j1, j2)th
entry is

∑
∀α∈X(n)

in

( ∑
∀β∈G(n)

j1

Gβ
∏
k 6=n

a
(k)
ikβk

)( ∑
∀γ∈G(n)

j2

Gγ
∏
k 6=n

a
(k)
ikγk

)
(15)

Note that G(n)
j indicates a set of core tensor entries whose

nth mode’s index is j. As shown in Equation (15), there
are two differences between GTA-FULL and GTA-PART
regarding B(n). First, B(n) of GTA-FULL is shared for all
rows of A(n). When a row in varies in Equation (15), the
nth mode’s index of X

(n)
in

differs while the other indices
remain the same. Since the index in has no effect on Equa-
tion (15) due to the k 6= n term, B(n) is the same for all
rows of A(n). Second, a computational cost of computing
B(n) tremendously increases as B(n) is calculated by both
nonzero- and zero-value entries of X while B

(n)
in

is only
computed by nonzeros of X (e.g., GTA-FULL requires
about 3.7 × 1011 floating point operations for computing
B(n) of the MovieLens tensor, which is 20000× larger than
that of GTA-PART).

Then, how can we minimize the cost of calculating B(n)?
The answer is using a factorization technique. To under-
stand the main idea of a factorization technique, we suggest
the following toy problem. As shown in Figure 4, a naive
solution of the toy problem is aggregating multiplication
results for all possible index combinations, which has expo-
nential time complexity O(NIN ). However, a factorization

Fig. 4: A toy problem for computing B(n) efficiently. The
problem is computing summations of multiplications, which
is a simplified version of Equation (15). The solution is using a
factorization (

∏
k

∑i=I
i=1 A

(k)
i ) with time complexity O(NI).

technique expressed as multiplications of each array’s sum-
mation (

∏
k

∑i=I
i=1 A

(k)
i ) remarkably reduces time complexity

to O(NI). Unfortunately, it is not straightforward to apply
the factorization technique to Equation (15) as core tensor
values (Gβ and Gγ) are weighted to multiplication results.
Hence, we transform (15) into the following Equation (16).

∑
∀β∈G(n)

j1

∑
∀γ∈G(n)

j2

GβGγ

( ∑
∀α∈X(n)

in

∏
k 6=n

(a
(k)
ikβk

a
(k)
ikγk

)

)

=
∑

∀β∈G(n)
j1

∑
∀γ∈G(n)

j2

M(n)[β][γ],

where M(n)[β][γ] = GβGγ

( ∑
∀α∈X(n)

in

∏
k 6=n

(a
(k)
ikβk

a
(k)
ikγk

)

)
.

(16)

After deciding core tensor entries β and γ in (16), a factor-
ization technique is applicable to computing an element of
a table M(n) ∈ R|G|×|G|. Correspondences between calcu-
lating M(n)[β][γ] and the toy problem are given as follows
(Table 3).

TABLE 3: Correspondences between calculating M(n)[β][γ] and
the toy problem. The factorization technique from the toy
problem is used for computing M(n)[β][γ] efficiently.

Toy problem Calculating M(n)[β][γ]
Number of arrays N N − 1

Array size I I1, ..., In−1, In+1, ..., IN
Selected value

from the kth array A
(k)
ik

a
(k)
ikβk

a
(k)
ikγk

Without the factorization technique, comput-
ing M(n)[β][γ] takes O(NIN−1) (assuming all
I1 = ... = IN = I for simplicity). However, it is
reduced to O(NI) by factorization. After filling out all
entries of the table M(n) using factorization, GTA-FULL
finally updates B(n) by the following equation.

B(n)[j1][j2] =
∑

∀β∈G(n)
j1

∑
∀γ∈G(n)

j2

M(n)[β][γ] (17)

Regarding the other data such as a(n)
in: , c(n)

in: , and δ(n)
α , GTA-

FULL uses the same procedure with that of GTA-PART to
update them. In summary, GTA-FULL is based on GTA-
PART and tackles the computational bottleneck for com-
puting B(n) by a factorization technique.
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TABLE 4: Complexity analysis of GTA and other methods with
respect to time and memory. The optimal complexities are in
bold. Note that memory complexity indicates the space require-
ment for intermediate data. |Ω| is the number of observable
entries in a given tensor X, and T1 and T2 are the numbers of
CPU and GPU cores, respectively (T1 << T2).

Algorithm Time Complexity Memory
(per iteration) Complexity

GTA-PART O(NIJ3/T1 + N2|Ω|JN/T2) O(J |Ω|)
GTA-FULL O(N2IJ2N/T1 +N2|Ω|JN/T2) O(J |Ω|+ J2N )
P-TUCKER O(NIJ3/T1 +N2|Ω|JN/T1) O(J2T1)

SPLATT O(NJN−1(|Ω|+ J2(N−1))/T1) O(IJN−1)

3.5 Theoretical Analysis

3.5.1 Convergence Analysis

In this section, we theoretically prove the correctness and
the convergence of GTA-PART and GTA-FULL.

Theorem 1 (Correctness of GTA-PART). The proposed
row-wise update rule (18) minimizes the loss function (6)
regarding the updated parameters.

arg min
[a

(n)
in1,...,a

(n)
inJn

]

L(G,A(1), ...,A(N)) = c
(n)
in: × [B

(n)
in

+ λIJn ]−1

(18)

Proof 1.
∂L

∂a
(n)
injn

= 0, ∀jn, 1 ≤ jn ≤ Jn

⇔
∑

∀α∈Ω
(n)
in

((
Xα−

∑
∀β∈G

Gβ

N∏
n=1

a
(n)
injn

)
×
(
−δ(n)

α (jn)

))
+λa

(n)
injn

= 0

⇔ [a
(n)
in1, ..., a

(n)
inJn

]

( ∑
∀α∈Ω

(n)
in

(
δ
(n)T
α δ

(n)
α

)
+λIJn

)
=

∑
∀α∈Ω

(n)
in

(
Xαδ

(n)
α

)

⇔ [a
(n)
in1, ..., a

(n)
inJn

] = c
(n)
in: × [B

(n)
in

+ λIJn ]−1

Note that the full proof of Theorem 1 is in the Supple-
mentary Material of GTA [22].

Theorem 2 (Correctness of GTA-FULL). The proposed row-
wise update rule (19) minimizes the loss function (7)
regarding the updated parameters.

arg min
[a

(n)
in1,...,a

(n)
inJn

]

L(G,A(1), ...,A(N)) = c
(n)
in: × [B(n) + λIJn ]−1

(19)

Proof 2. Please refer to the Supplementary Material [22].

Theorem 3 (Convergence of GTA-PART and GTA-FULL).
GTA-PART and GTA-FULL converge to local minima
or saddle points.

Proof 3. The loss functions (6) and (7) are non-increasing
since the update rule (10) with argmin function makes
loss functions unchanged or smaller for every update.

We note that the ALS method also exhibits a local linear
convergence for CP decomposition [14], [26].

3.5.2 Complexity Analysis
In this section, we analyze time and memory complexities
of GTA-PART and GTA-FULL. For simplicity, we assume
I1 = ... = IN = I and J1 = ... = JN = J . Table 4
summarizes the time and memory complexities of GTA and
other methods. Note that we calculate time complexities
per iteration (lines 3-19 in Algorithm 2), and we focus
on memory complexities of intermediate data, not of all
variables.
Theorem 4 (Time complexity of GTA-PART). The

time complexity of GTA-PART is O(NIJ3/T1 +
N2|Ω|JN/T2).

Proof 4. Please refer to the Supplementary Material [22].

Theorem 5 (Memory complexity of GTA-PART). The
memory complexity of GTA-PART is O(J |Ω|).

Proof 5. The intermediate data of GTA-PART consist of a
vector c

(n)
in: (∈ RJ ) , and three matrices δ(n) (∈ RJ×|Ω|),

B
(n)
in

, and [B
(n)
in

+ λIJn ]−1 (∈ RJ×J ). As all memory
complexities of other intermediate data are negligible
compared to that of δ(n), The total memory complexity
of GTA-PART is equivalent to the memory complexity
of δ(n), which is O(J |Ω|).

Please refer to the Supplementary Material [22] for proofs of
GTA-FULL’s time and memory complexities.

4 EXPERIMENTS

In this section, we present experimental results of GTA
and other methods. We focus on answering the following
questions.

1) Effectiveness of GPUs (Section 4.2). How much do
GPUs accelerate the factorization speed of GTA-PART
compared to the state-of-the-art method P-TUCKER?

2) Effectiveness of the factorization technique (Sec-
tion 4.3). How much does the factorization technique
accelerate the update process of GTA-FULL compared
to the state-of-the-art method SPLATT?

3) GPU scalability (Section 4.4). How well do GTA-
PART and GTA-FULL scale with respect to the num-
ber of GPUs used for parallelization?

4) Correctness verification (Section 4.5). How accurately
GTA-PART and GTA-FULL factorize given tensors
compared to P-TUCKER and SPLATT?

We describe the datasets and experimental settings in
Section 4.1, and answer the questions in Sections 4.2 to 4.4.

4.1 Experimental Settings

4.1.1 Datasets
We use both real-world and synthetic tensors to evaluate
GTA and competitors. Table 5 summarizes the tensors we
used in experiments, which are available at https://github.
com/sejoonoh/GTA-Tensor. For real-world tensors, we use
Netflix, MovieLens, DBLP, and Facebook datasets. Netflix is
movie rating data which consist of (user, movie, year-month,
rating). MovieLens is movie rating data which consist of
(user, movie, year, hour, rating). DBLP is publication data
which consist of (author, conference, year, count). Facebook

https://github.com/sejoonoh/GTA-Tensor
https://github.com/sejoonoh/GTA-Tensor
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TABLE 5: Summary of real-world and synthetic tensors used
for experiments. M: million, K: thousand.

Name Order Dimensionality |Ω| Rank

Netflix 3 (480K, 18K, 74) 100M 10
MovieLens 4 (138K, 27K, 21, 24) 20M 10

DBLP 3 (418K, 4K, 50) 1.3M 10
Facebook 3 (64K, 64K, 870) 1.5M 10
Synthetic 4 (10K, 10K, 10K, 10K) ∼10M 10

is social network data which consist of (user 1, user 2,
date, friendship). Notice that Netflix and MovieLens are
partially observable tensors, while DBLP and Facebook are
fully observable tensors. For synthetic tensors, we generate
random tensors of size I1 = I2 = ... = IN with real-valued
entries between 0 and 1. We also assume that the core tensor
G is of size J1 =J2 = ...=JN .

4.1.2 Competitors

We compare GTA-PART and GTA-FULL with two state-
of-the-art Tucker factorization (TF) methods. Descriptions
of all methods are given as follows:

• P-TUCKER [13] the scalable TF method for partially
observable tensors which minimizes memory complex-
ities of intermediate data by employing a row-wise
update rule of factor matrices.

• SPLATT [12]: the speed-focused TF algorithm for fully
observable tensors which accelerates a tensor-times-
matrix chain (TTMc) by a compressed sparse fiber (CSF)
structure.

Notice that other Tucker methods (e.g., [10], [11], [27]) are
excluded since they present limited scalability or speed
compared to that of the competitors mentioned above.

4.1.3 Environment

GTA is implemented in C with OPENMP and OPENCL
libraries utilized for CPU and GPU parallelization. For
competitors, we use codes provided by the authors (P-
TUCKER3 and SPLATT4). We run experiments on a het-
erogeneous CPU/GPU cluster called “Chundoong5”. In our
experiments, we use up to 8 computing nodes, where each
node consists of 16 CPUs (Intel Xeon E5-2650 2.0 GHz) and
4 GPUs (NVIDIA GTX 1080). We note that ‘Distributed’
environment, which is labeled “Distr.Mult.” in figures, in-
dicates multiple nodes (N ) with multiple GPUs (M ) are
used for experiments (in total, NM GPUs). A parameter
λ of GTA and P-TUCKER is set to 0.001; for SPLATT, we set
the number of CSF allocations to 1 and choose a LAPACK
SVD routine for stable convergence. We set the maximum
running time per iteration to 2 hours and the maximum
number of iterations to 10. In reporting running times,
we use average elapsed time per iteration instead of total
running time in order to confirm the theoretical complexities
(see Table 4), which are analyzed by per-iteration.

3. https://github.com/sejoonoh/P-Tucker
4. https://github.com/ShadenSmith/splatt
5. http://aces.snu.ac.kr/chundoong/

Fig. 5: Performance of GTA-PART and P-TUCKER with respect
to the number of observable entries of a partially observable
synthetic tensor. Distributed-GPU version of GTA-PART runs
up to 36.1× faster than P-TUCKER when |Ω| = 107.

Fig. 6: Performance of GTA-PART and P-TUCKER for real-
world partially observable tensors. Distributed-GPU version of
GTA-PART shows the fastest factorization speed, which is up
to 44.6× faster than P-TUCKER.

4.2 Effectiveness of GPUs

We evaluate how much GPUs accelerate the factorization
speed of GTA-PART compared to P-TUCKER using both
synthetic and real-world tensors.

4.2.1 Synthetic Data

We increase the number of observable entries (|Ω|) from 103

to 107, while fixing N = 4, In= 104, and Jn= 10. As shown
in Figure 5, GTA-PART presents the fastest factorization
speed when |Ω| ≥ 104 and runs up to 36.1× faster than P-
TUCKER on the largest tensor with |Ω| = 107. When |Ω|
is small, P-TUCKER runs faster than GTA-PART as data
copying between CPU and GPU becomes a computational
bottleneck of GTA-PART, while P-TUCKER does not suffer
from that cost. Besides, when |Ω| is small, distributed-
GPU version of GTA-PART runs slower than single-node
versions due to communication costs between computing
nodes (if |Ω| is large, communication costs are negligible
compared to computational costs). Detailed results of Fig-
ure 5 and analysis of (copy + communication) time of GTA-
PART are summarized in the Supplementary Material [22].

https://github.com/sejoonoh/P-Tucker
https://github.com/ShadenSmith/splatt
http://aces.snu.ac.kr/chundoong/
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Fig. 7: Performance of GTA-FULL and SPLATT with respect to
the number of nonzeros of a fully observable synthetic tensor.
Distributed-GPU version of GTA-FULL runs up to 26.4× faster
than SPLATT when |Ω| = 107.

Fig. 8: Performance of GTA-FULL and SPLATT for real-world
fully observable tensors. Multi-GPU version of GTA-FULL
shows the fastest factorization speed (up to 38.8× compared
to SPLATT).

4.2.2 Real-world Data
We measure the average running time per iteration of GTA-
PART and P-TUCKER on the real-world partially observable
tensors introduced in Section 4.1.1. Like the results for syn-
thetic tensors, distributed-GPU version of GTA-PART also
exhibits the fastest speed among all methods (see Figure 6).
Note that GTA-PART succeeds in decomposing large-scale
real-world tensors and runs 5.6 − 44.6× faster than the
competitor.

4.3 Effectiveness of the Factorization Technique

We evaluate how much the factorization technique ac-
celerates the update process of GTA-FULL compared to
SPLATT using both synthetic and real-world tensors.

4.3.1 Synthetic Data
We increase the number of nonzeros of a tensor (|Ω|) from
103 to 107, while fixing N = 4, In = 104, and Jn = 10.
As shown in Figure 7, GTA-FULL has the fastest running
time for all cases, and distributed-GPU version of GTA-
FULL runs up to 26.4× faster than SPLATT when |Ω| is

Fig. 9: The GPU scalability of GTA-PART with respect to
the number of GPUs (left) and computing nodes (right) used
for experiments. GTA-PART presents near-linear scalability
regarding the number of GPUs and computing nodes.

107. Detailed results of Figure 7 and analysis of (copy +
communication) time of GTA-FULL are summarized in the
Supplementary Material [22].

4.3.2 Real-world Data
We evaluate the performance of GTA-FULL and SPLATT
on the real-world fully observable tensors: DBLP and Face-
book. Unlike GTA-PART, a distributed-GPU version of
GTA-FULL runs slower than a single-node one since the
number of tensor nonzeros is not large enough to ignore
communication costs (see Figure 8). Notice that GTA-FULL
factorizes the real-world tensors 18.3 − 38.8× faster than
SPLATT.

4.4 GPU Scalability
We measure the speed-ups of GTA-PART by increas-
ing the number of GPUs and computing nodes from 1
to 8, while fixing N = 4, In = 104, Jn = 10, and
|Ω|= 107. Time1/T imeGorN indicates the speed-up, where
TimeGorN is the running time using G GPUs or N comput-
ing nodes, respectively. Figure 9 shows near-linear scalabil-
ity of GTA-PART with respect to the number of GPUs and
computing nodes. GTA-PART scales linearly with a higher
coefficient for a single node (left) compared to distributed
environments (right) due to the communication costs. We
omit GPU scalability results of GTA-FULL since they are
similar to those of GTA-PART.

4.5 Correctness Verification
We verify whether our method is correct or not using two
accuracy metrics: reconstruction error and test root mean
square error (RMSE); the former describes how precisely a
method factorizes a given tensor, and the latter indicates
how accurately a method estimates values of test data.
GTA shows comparable reconstruction error and test RMSE
as the state-of-the-art methods, P-TUCKER and SPLATT.
Moreover, GTA offers a stable quality of factor matrices re-
gardless of random initialization. The detailed experimental
results of GTA for accuracy and robustness are offered in
the Supplementary Material [22].

5 RELATED WORK

In this section, we review related works on CP and Tucker
factorizations, tensor factorization methods on heteroge-
neous platforms, and applications of Tucker factorization.
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CP Decomposition (CPD). Many algorithms have been
developed for scalable CPD. GigaTensor [9] is the first dis-
tributed CP method running on the MapReduce framework.
Park et al. [28] propose a distributed algorithm, DBTF,
for fast and scalable Boolean CPD. In [29], Papalexakis
et al. present a sampling-based, parallelizable method for
sparse CPD. AdaTM [30] is an adaptive tensor memoization
algorithm for CPD of sparse tensors, which automatically
tunes algorithm parameters. Kaya and Uçar [31] propose
distributed memory CPD methods based on hypergraph
partitioning of sparse tensors. Those algorithms are based
on the ALS similarly to the conventional Tucker-ALS.

Since the above CP methods are based on fully observ-
able tensors, scalable CPD methods for partially observable
tensors have gained increasing attention in recent years.
Karlsson et al. [32] discuss parallel formulations of ALS
and CCD++ for tensor completion in the CP format. Smith
et al. [33] explore three optimization algorithms for high
performance, parallel tensor completion: alternating least
squares (ALS), stochastic gradient descent (SGD), and coor-
dinate descent (CCD++). For distributed platforms, Shin et
al. [14] propose CDTF and SALS, which are ALS-based CPD
methods for partially observable tensors. Note that [14] and
[33] offer a row-wise parallelization for CPD as GTA does
for Tucker decomposition.

Tucker Factorization (TF). De Lathauwer et al. [6] pro-
pose Tucker-ALS, described in Algorithm 1. As the size
of real-world tensors increases rapidly, there has been a
growing need for scalable TF methods. One major chal-
lenge is the “intermediate data explosion” problem [9].
MET (Memory Efficient Tucker) [7] tackles this challenge by
adaptively ordering computations and performing them in
a piecemeal manner. HaTen2 [8] reduces intermediate data
by reordering computations and exploiting the sparsity of
real-world tensors in MapReduce. However, both MET and
HaTen2 suffer from a limitation called M-bottleneck [10]
that arises from explicit materialization of intermediate data.
S-HOT [10] avoids M-bottleneck by employing on-the-fly
computation. Kaya and Uçar [11] discuss a shared and
distributed memory parallelization of an ALS-based TF for
sparse tensors. [34] optimizes tensor-times-dense matrix op-
eration for sparse and semi-sparse tensors, which is applied
to TF to improve its performance. [35] proposes optimiza-
tions of HOOI for dense tensors on distributed systems. The
above methods assume fully observable tensors and depend
on SVD for updating factor matrices.

For partially observable tensors, only few Tucker meth-
ods have been developed including [13]. Liu et al. [36]
define the trace norm of a tensor, and present three convex
optimization algorithms for low-rank tensor completion.
Liu et al. [37] propose a core tensor Schatten 1-norm mini-
mization method with a rank-increasing scheme for tensor
factorization and completion.

GPU-based Tensor Factorization Although GPUs are
gaining popularity as innovative tools for accelerating
tensor factorization (TF), there are only few GPU-based
TF methods [38], [39], [27], [34]. [38] provides a GPU-
accelerated nonnegative factorization for a 3-way tensor.
[39] accelerates tensor operations for CPD by flagged-
coordinate structures and 2-dimensional parallelization on
GPUs. To the best of our knowledge, [27] is the first GPU-

accelerated Tucker method which performs block-wise n-
mode product on GPUs. However, it is not scalable as its
memory complexity is equivalent to the tensor size O(IN ).
Recently, optimizations for TF on CPU and GPU platforms
have been presented in [34].

Applications of Tucker Factorization. Sun et al. [40]
apply a 3-way TF to a tensor consisting of (users, queries,
Web pages) to personalize Web search. Sun et al. [41] pro-
pose a framework for content-based network analysis and
visualization. TF is also used for analyzing (cancer, gene
sets, genes) relations in multi-platform cancer data [42].

6 CONCLUSION

In this paper, we propose GTA, a general framework for
Tucker factorization on heterogeneous platforms. By using
ALS with a row-wise update rule, accelerating a compu-
tational bottleneck with GPUs, and devising a factorization
technique for FOTF, GTA successfully offers time-optimized
algorithms with theoretical proof and analysis. GTA runs
5.6−44.6× faster than the state-of-the-art and exhibits near-
linear scalability with respect to the number of GPUs and
computing nodes. Future works include developing approx-
imation algorithms of GTA that use sparse core tensors for
faster factorization speed, or applying sampling techniques
on observable entries to accelerate decompositions, while
sacrificing little accuracy.
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[11] O. Kaya and B. Uçar, “High performance parallel algorithms for
the tucker decomposition of sparse tensors,” in ICPP, pp. 103–112,
2016.

[12] S. Smith and G. Karypis, “Accelerating the tucker decomposition
with compressed sparse tensors,” in Europar, 2017.

[13] S. Oh, N. Park, L. Sael, and U. Kang, “Scalable tucker factorization
for sparse tensors - algorithms and discoveries,” in ICDE, 2018.

[14] K. Shin, L. Sael, and U. Kang, “Fully scalable methods for dis-
tributed tensor factorization,” TKDE, vol. 29, no. 1, pp. 100–113,
2017.

[15] G. I. Allen, “Regularized tensor factorizations and higher-order
principal components analysis,” arXiv preprint arXiv:1202.2476,
2012.

[16] J. Kim, Y. He, and H. Park, “Algorithms for nonnegative matrix
and tensor factorizations: A unified view based on block coordi-
nate descent framework,” J. of Global Optimization, vol. 58, pp. 285–
319, Feb. 2014.

[17] A. Shan, “Heterogeneous processing: a strategy for augmenting
moore’s law,” Jan 2006.

[18] S. Mittal and J. Vetter, “A survey of cpu-gpu heterogeneous
computing techniques,” vol. 47, 07 2015.

[19] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous
computing techniques,” ACM Comput. Surv., vol. 47, pp. 69:1–
69:35, July 2015.

[20] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel program-
ming standard for heterogeneous computing systems,” Computing
in Science Engineering, vol. 12, pp. 66–73, May 2010.

[21] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “Snucl: An opencl
framework for heterogeneous cpu/gpu clusters,” ICS ’12, pp. 341–
352, ACM, 2012.

[22] S. Oh, N. Park, J.-G. Jang, S. Lee, and U. Kang, “Supplementary
material for gta.” https://github.com/sejoonoh/GTA-Tensor/
blob/master/papers/supple.pdf, 2018.

[23] L. N. Trefethen and D. Bau, Numerical Linear Algebra. SIAM, 1997.
[24] T. G. Kolda, “Multilinear operators for higher-order decomposi-

tions,” tech. rep., Sandia National Laboratories, 2006.
[25] L. Dagum and R. Menon, “Openmp: An industry-standard api

for shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5,
pp. 46–55, Jan. 1998.

[26] A. Uschmajew, “Local convergence of the alternating least squares
algorithm for canonical tensor approximation,” SIAM Journal on
Matrix Analysis and Applications, vol. 33, no. 2, pp. 639–652, 2012.

[27] B. Zou, M. Lan, C. Li, L. Tan, and H. Chen, “Context-aware
recommendation using gpu based parallel tensor decomposition,”
in Advanced Data Mining and Applications, pp. 213–226, 2014.

[28] N. Park, S. Oh, and U. Kang, “Fast and scalable distributed
boolean tensor factorization,” in ICDE, 2017.

[29] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Parcube:
Sparse parallelizable tensor decompositions,” in ECML PKDD,
pp. 521–536, 2012.

[30] J. Li, J. Choi, I. Perros, J. Sun, and R. Vuduc, “Model-driven sparse
cp decomposition for higher-order tensors,” in IPDPS, pp. 1048–
1057, 2017.
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