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Abstract—Given a dense tensor, how can we find latent patterns
and relations efficiently? Existing Tucker decomposition methods
based on Alternating Least Square (ALS) have limitations in
terms of time and space since they directly handle large dense
tensors to obtain the result of Tucker decomposition. Although
few methods have tried to reduce their computational time
by sampling tensors, sketching tensors, and efficient matrix
operations, their speed and memory efficiency are limited. In
this paper, we propose D-Tucker, a fast and memory-efficient
method for Tucker decomposition on large dense tensors. D-
Tucker consists of the approximation, the initialization, and the
iteration phases. D-Tucker 1) compresses an input tensor by
computing randomized singular value decomposition of matrices
sliced from the input tensor, and 2) efficiently obtains orthogonal
factor matrices and a core tensor by using SVD results of sliced
matrices. Through experiments, we show that D-Tucker is up to
38.4× faster, and requires up to 17.2× less space than existing
methods with little sacrifice in accuracy.

Index Terms—dense tensor, tucker decomposition, efficiency

I. INTRODUCTION

How can we efficiently find latent patterns and relations in

large dense tensors? Many real-world dense data, including

brain image, spectral images, and air quality, are represented

as multi-dimensional arrays, or tensors [1], [2]. Tucker de-

composition [3], which factorizes a given tensor into factor

matrices and a core tensor to find hidden concepts and latent

patterns, has been widely used for analyzing tensors with

various applications.

Alternating Least Square (ALS) is the most widely used

method for Tucker decomposition. Existing ALS based meth-

ods, however, do not provide one or more of the desired

properties for dense tensor decompositions: fast running time,

efficient memory usage, and high accuracy. A few ALS based

methods slightly reduce the computational time using efficient

matrix operations [4] or applying randomized algorithms [5].

Moreover, other Tucker decomposition methods [6], [7] re-

duce the computational time and the memory requirement by

approximating large dense tensors. However, none of them

provides both fast running time with high accuracy and low

memory usage. The major challenges to decompose dense

tensors are 1) to minimize computational costs while giving

low error, and 2) to avoid intermediate data explosion which

leads to heavy computational costs and memory requirements.

In this paper, we propose D-Tucker, a fast and memory-

efficient method for Tucker decomposition on large dense

tensors. The main ideas of D-Tucker are: 1) to compress

matrices sliced from an input tensor by exploiting randomized

singular value decomposition (SVD), 2) to use the SVD results

in initializing and updating factor matrices and a core tensor,

and 3) to carefully determine ordering of computation for

efficiency. D-Tucker consists of three phases: approximation,

initialization, and iteration. In the approximation phase, D-

Tucker computes randomized SVD [8] of matrices sliced from

the input tensor, so that we reduce the size of the input tensor

for updating the factor matrices and the core tensor. In the

initialization phase, D-Tucker provides a starting point by

computing orthogonal factor matrices using the SVD results of

sliced matrices. Then, D-Tucker iteratively updates the factor

matrices and the core tensor for reducing reconstruction error

in the iteration phase by utilizing the SVD results. D-Tucker

directly uses the SVD results, and avoids reconstruction of

the approximated tensor for better time and space efficiency.

Through comprehensive experiments, we show that D-Tucker

is fast and memory-efficient compared to existing methods.

The contributions of this paper are as follows.

• Algorithm. We propose D-Tucker, a fast and memory-

efficient method for decomposing dense tensors.

• Experiment. Extensive experiments show that D-Tucker

is up to 38.4× faster and requires up to 17.2× less space

than competitors (see Figure 1).

D-Tucker is available at https://datalab.snu.ac.kr/dtucker.

II. RELATED WORK

We describe the related works for Tucker decomposition

methods. De Lathauwer et al. [9] proposed Tucker-ALS which

alternately updates factor matrices and obtains core tensor.

Che et al. [5] applied randomized algorithms for Tucker

decomposition. The main challenges of Tucker decomposition

are heavy computational time and large memory requirements

due to large-scale dense tensors; thus recent works [6], [7]

approximate a large dense tensor with a small tensor, and

updates the factor matrices and the core tensor using the

small approximated tensor. Tsourakakis proposed MACH [6]

method which randomly chooses elements of an input tensor

with probability p. While MACH uses a sampled tensor in

update phase, MACH has an accuracy issue due to the sam-

pling. It also provokes heavy computational cost and memory

requirement to update factor matrices and a core tensor at
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each iteration. Malik et al. [7] proposed Tucker-ts which

uses sketching in updating factor matrices and a core tensor.

Tucker-ts generates small sketching tensors for each mode,

and uses the sketching tensors in update phase. However, it

requires a heavy computational cost to approximate a tensor

since it performs sketching for all modes.

III. PROPOSED METHOD

A. Approximation Phase

The purpose of the approximation phase is to compress

the input data with low error in order to increase memory

efficiency and reduce the number of flops in the iteration

phase. Our idea is to exploit two characteristics of a group of

real-world tensors: 1) skewed shape, and 2) low dimensional

structure in sliced matrices. We reorder modes of a given

tensor based on the first characteristic, and compress the sliced

matrices of the reordered tensor using a fast dimensionality

reduction technique, randomized SVD.

Skewed shape of real-world tensors. Many real-world

tensors have a skewed shape, where some of the modes

have much smaller dimensionalities compared to those of

other modes. We reorder modes in descending order of di-

mensionality and represent the reordered tensor as Xr ∈
R

I1×I2×K3×···×KN where I1 and I2 are the two largest

dimensionalities, Kn for n = 3, 4, ..., N are the remaining

dimensionalities, and I1 ≥ I2 ≥ K3 ≥ · · · ≥ KN .

Low dimensional structure in sliced matrices. Sliced

matrices of a given real-world tensor for any two modes often

have a low dimensional structure which allows D-Tucker to

compress the given tensor data with low errors. Furthermore,

there is a computational benefit: by creating sliced matrices as

opposed to sub-tensors, D-Tucker leverages the randomized

SVD [10] with sparse embedding matrix [7], [11] to yield

faster performance in the approximation phase. D-Tucker

avoids working with tensor decomposition methods for sub-

tensors, which leads to better efficiency.

We first express a reordered tensor Xr ∈
R

I1×I2×K3×···×KN as a collection of sliced matrix X::k3...kN
.

We formally define the sliced matrix X::k3...kN
in Definition 1.

Definition 1 (Sliced matrix X::k3...kN
). Given a reordered

tensor Xr ∈ R
I1×I2×K3×···×KN , we extract sliced matrices

by slicing the reordered tensor Xr so that the size of each
sliced matrix X::k3...kN

is I1 × I2. �
After slicing the tensor Xr into the matrices X::k3...kN

, we

decompose the sliced matrix using randomized SVD [10] with

sparse embedding matrix [7], [11].

X::k3...kN
� U::k3...kN

Σ::k3...kN
VT

::k3...kN
(1)

where U::k3...kN
(∈ R

I1×r) is a left singular vector matrix,

Σ::k3...kN
(∈ R

r×r) is a singular value matrix, V::k3...kN
(∈

R
I2×r) is a right singular vector matrix, and the rank r is

much smaller than the dimensionalities I1 and I2.

B. Initialization Phase

D-Tucker initializes factor matrices with Sequentially Trun-

cated Higher-Order SVD (ST-HOSVD) [12] using the SVD

results from the approximation phase; well-initialized factor

matrices help reduce the number of iterations. Our idea is to

initialize factor matrices without reconstructing X from the

SVD results of sliced matrices, which reduces the compu-

tational cost and memory usage for the initialization. Note

that we use standard SVD [13] for the effectiveness of the

initialization.

First mode. We compute a factor matrix for the first mode.

We represent mode-1 matricized matrix X(1) of the reordered

tensor Xr as follows:

X(1) =
[
X::1,...,1; · · · ;X::K3,...,KN

]
=

[
X1; · · · ;Xl; · · · ;XL

]
where L is equal to K3×· · ·×KN , and the index l is defined

as follows:

l = 1 +

N∑
i=3

(
(ki − 1)

i−1∏
m=3

Km

)

where Km is the dimensionality of mode-m, N is the order

of the input tensor, and
∏i−1

m=3 Km is equal to 1 if i−1 < m.

Note that we represent a sliced matrix as Xl with the index

l instead of X::k3...kN
. Using the SVD of sliced matrices, the

mode-1 matricized matrix X(1) is expressed as follows:

X(1) =
[
X1; · · · ;Xl; · · · ;XL

] � [
X̃1; · · · ; X̃l; · · · ; X̃L

]
(2)

where X̃l is a representation of UlΣlV
T
l . We carefully de-

couple UlΣl and VT
l , and perform SVD of the concatenated

matrix consisting of UlΣl for l = 1..L [14], [15].
X(1) �

[
U1Σ1; · · · ;ULΣL

]× (blkdiag({Vl}Ll=1))
T

� UΣVT(blkdiag({Vl}Ll=1))
T

(3)

where UΣVT is the SVD result of the concatenated

matrix [U1Σ1; · · · ;ULΣL], L = K3 × · · · × KN , and

blkdiag({Vl}Ll=1) is a block diagonal matrix consisting of

{Vl}. We obtain the initial factor matrix A(1) = U.

Second mode. We compute a factor matrix for the second

mode. We compute 1-mode product using the SVD results

instead of the given tensor, and then perform SVD for the

second mode. As shown in Equation (2), we matricize the

tensor along mode-1 using the sliced matrices. Then, we

perform matrix multiplication between the factor matrix A(1)T

of the first mode and mode-1 matricized matrix as follows:
A(1)TX(1) � A(1)T

[
U1Σ1VT

1; · · · ;ULΣLV
T
L

]
= Y(2),interblkdiag({ΣlV

T
l }Ll=1)

(4)

where Y(2),inter = A(1)T
[
U1; · · · ;UL

]
, L = K3×· · ·×KN ,

and blkdiag({ΣlV
T
l }Ll=1) is a block diagonal matrix con-

sisting of ΣlV
T
l . We compute Equation (4) by computing

Y(2),inter and multiplying it with the block diagonal matrix;

we reshape the result of Y(2),interblkdiag({Σl VT
l }Ll=1) as

a tensor Y (∈ R
J1×I2×K3×···×KN ). After the reshaping, we

obtain the initial factor matrix A(2) of the second mode by

computing left singular vectors of mode-2 matricized matrix

Y(2).

Remaining modes. We observe that the mode-1 matriciza-

tion of X×1A(1)T×2A(2)T is given by the following equation.
A(1)TX(1)blkdiag({A(2)}Ll=1)

� Y(2),interblkdiag({ΣlV
T
l A

(2)}Ll=1)
(5)

Note that Y(2),inter = (A(1)T [U1; · · · ;UL]) has been already

computed and saved as Yreuse when computing the factor

matrix of the second mode; thus we reuse Yreuse when com-

puting Equation (5). After computing mode-1 matricization
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of X ×1 A(1)T ×2 A(2)T, we reshape the result as a tensor Y

(∈ R
J1×J2×K3×···×KN ), perform SVD of Y(3), and store Y

as Yreuse for remaining modes.

For modes i = 4, 5, ..., N , we perform (i−1)-mode product

with Yreuse stored for the previous mode-(i−1) and initialize

the factor matrix A(i) as left singular vectors of mode-i
matricization of X×1 A(1)T ×2 A(2)T · · · ×i−1 A(i−1)T.

C. Iteration Phase

The objective of the iteration phase is to alternately update

factor matrices and compute the core tensor by efficiently

computing n-mode products. Our ideas are to 1) avoid the

reconstruction from the SVD results by exploiting their special

structure, 2) carefully order matrix multiplications, and 3)

avoid redundant computations for the first and second modes.

Our ideas help D-Tucker avoid the rapid growth of compu-

tational time as the number of iterations increases. We use

standard SVD [13] for stable convergence in this phase.

First mode. We update the first factor matrix A(1) using the

initialized factor matrices and the SVD results of the sliced

matrices. We first compute 2-mode product using the SVD

results instead of the given tensor, and then perform products

for the remaining modes 3, 4, ..., N . We matricize the tensor

along mode-2 with the sliced matrices as follows:

X(2) =
[
XT

1; · · · ;XT
l ; · · · ;XT

L

] � [
X̃T

1 ; · · · ; X̃T
l ; · · · ; X̃T

L

]
Then, we perform matrix multiplication between the factor

matrix A(2)T of the second mode and the mode-2 matricized

matrix as follows:
A(2)TX(2) � A(2)T

[
V1Σ1UT

1; · · · ;VLΣLU
T
L

]
= Y(1),interblkdiag({ΣlU

T
l }Ll=1)

(6)

where Y(1),inter = A(2)T
[
V1; · · · ;VL

]
, L = K3×· · ·×KN ,

and blkdiag({ΣlU
T
l }Ll=1) is a block diagonal matrix con-

sisting of ΣlU
T
l . We compute Equation (6) by computing

Y(1),inter, and multiplying it with the block diagonal matrix;

then, we reshape the result of Y(1),interblkdiag({Σl U
T
l }Ll=1)

as Y (∈ R
I1×J2×K3×···×KN ). After computing Equation (6),

we perform the remaining n-mode products with Y for

n = 3, 4, ..., N , and then update the factor matrix A(1) by

computing SVD of mode-1 matricized matrix Y(1).

Second mode. We update the second factor matrix A(2)

by computing 1-mode product using the SVD results and

then performing products for the remaining modes 3, 4, ..., N .

As shown in Equation (2), we matricize the tensor along

mode-1 with the sliced matrices. Then, we perform matrix

multiplication between the factor matrix A(1)T of the first

mode and the mode-1 matricized matrix as in Equation (4). We

first compute Y(2),inter = A(1)T
[
U1; · · · ;UL

]
, multiply it

with the block diagonal matrix blkdiag({ΣlV
T
l }Ll=1), and then

reshape the result of Y(2),interblkdiag({Σl VT
l }Ll=1) as Y

(∈ R
J1×I2×K3×···×KN ). Note that we store Y(2),inter to reuse

it when computing the factor matrices A(i) for i = 3, 4, ..., N
and the core tensor. After the reshaping, we perform the

remaining n-mode products with Y for n = 3, 4, ..., N , and

then update the factor matrix A(2) by computing SVD of

mode-2 matricized matrix Y(2).

TABLE I
DESCRIPTION OF REAL-WORLD TENSOR DATASETS.

Dataset Order Dimensionality Target rank

Brainq [16] 3 (360, 21764, 9) (10, 10, 5)
Boats [17] 3 (320, 240, 7000) (10, 10, 10)
Air Quality1 3 (30648, 376, 6) (10, 10, 5)
HSI [18] 4 (1021, 1340, 33, 8) (10, 10, 10, 5)

Remaining modes and core tensor. We update factor

matrices A(i) for all i = 3, 4, ..., N , and the core tensor G.

The mode-1 matricization of X ×1 A(1)T ×2 A(2)T is given

by Equation (5). We avoid redundant computation by reusing

the saved Y(2),inter. Note that reusing just Y(2),inter reduces

computational costs since Y(2),inter is much smaller than

the input tensor X and the SVD results of sliced matrices.

After computing Y(2),interblkdiag({ΣlV
T
l A

(2)}Ll=1) and re-

shaping the result as Yreuse (∈ R
J1×J2×K3···×KN ) once, the

reshaped tensor is reused to compute factor matrices A(i) for

i = 3, 4, ..., N and the core tensor G. The factor matrix A(i)

is updated by performing the remaining n-mode products, and

SVD of Y(i). For the core tensor, we perform n-mode products

between the reshaped tensor Yreuse (∈ R
J1×J2×K3···×KN )

and A(n)T for all n = 3, 4, ..., N .

IV. EXPERIMENT

A. Experimental Settings

We use a workstation with a single CPU (Intel Xeon E5-

2630 v4 @ 2.2GHz) and 512GB memory. We use four real-

world dense tensors described in Table I.

Competitors. We compare D-Tucker with Tucker-ALS,

MACH [6], Randomized Tucker Decomposition (RTD) [5],

Tucker-ts [7], and Tucker-ttmts [7]. All the methods including

D-Tucker are implemented in MATLAB (R2019b).

Parameters. We use a single thread. The maximum number

of iterations is set to 50. We set the dimensionality Jn of the

nth mode of a core tensor to 10, but we set it to 5 when

the dimensionality Kn of the nth mode of an input tensor

is smaller than 10. We also set the rank J of randomized

SVD to 10. The iteration stops when the variation of the error√
‖X‖2F−‖G‖2F
‖X‖F [19] is less than ε = 10−4.

Reconstruction error. We evaluate the accuracy in terms of

reconstruction error
‖X−X̂‖2F
‖X‖2F

where X is an input tensor and X̂

is the reconstruction from the output of Tucker decomposition.

B. Performance

Time and reconstruction error. We evaluate the running

time and the reconstruction error of D-Tucker compared to

other Tucker decomposition methods based on ALS. Fig-

ures 1(a) and 1(b) show D-Tucker outperforms competitors in

terms of the running time to obtain factor matrices and core

tensor, while giving a reconstruction error close to that of the

most accurate method Tucker-ALS. D-Tucker is up to 38.4×
faster than Tucker-ts, Tucker-ttmts, and MACH with smaller or

similar reconstruction errors. Although Tucker-ALS and RTD

have smaller errors for Air quality and HSI datasets, they are

at least 3.4× and 42× slower than D-Tucker, respectively.

1https://www.airkorea.or.kr
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Fig. 1. D-Tucker provides the best performance in terms of error, running time, and memory usage. (a) (b) D-Tucker provides the best tradeoff between
running time and error. (c) Space cost of D-Tucker. (d) The running time of each iteration of D-Tucker. (e) The number of iterations of D-Tucker.

Efficiency of the iteration phase. We compare the running

time per iteration and the number of iterations of D-Tucker

to those of ALS based competitors in Figures 1(c) and 1(d).

Contrary to other methods, D-Tucker avoids rapid growth of

the total running time as the number of iterations increases;

the overall running time of D-Tucker is not proportional to

the running time per iteration since the approximation phase

of D-Tucker is dominant. In Figure 1(c), the running time of

each iteration of D-Tucker is at least 4.6× lower than those of

other competitors except for Boats dataset. For Boats dataset,

the running time of each iteration of Tucker-ttmts is lower

than that of D-Tucker, but Tucker-ttmts requires larger number

of iterations than D-Tucker, and thus D-Tucker is 4.5× faster

than Tucker-ttmts at the iteration phase. Figure 1(d) shows that

the number of iterations of D-Tucker is smaller than those of

all competitors except Tucker-ALS, for 3-order datasets; the

number of iterations of D-Tucker is up to 1.5× larger than that

of Tucker-ALS, but the difference is quite small considering

the running time per iteration. For the 4-order dataset, the

number of iterations of D-Tucker is 1.3× larger than that of

MACH, but the running time per iteration of D-Tucker is 6 .6×
lower than that of MACH.

Space cost. We compare the memory usage of methods

for initializing and updating factor matrices and core tensor.

Figure 1(e) shows D-Tucker outperforms competitors in terms

of memory usage to obtain factor matrices and core tensor.

D-Tucker requires up to 17.2× smaller space than Tucker-ts

and Tucker-ttmts which are the second best methods in terms

of space usage. For Boats dataset, Tucker-ts and Tucker-ttmts

are efficient in terms of space since Boats dataset has a setting

(order N and rank J are very small, and dimensionalities I and

K are very large) where Tucker-ts and Tucker-ttmts operate

well. Still, D-Tucker requires 1.03× less space than Tucker-

ts. Although D-Tucker requires 2.1× more space than Tucker-

ttmts, D-Tucker achieves 7.5× less error than Tucker-ttmts.

V. CONCLUSIONS

We propose D-Tucker, a fast and memory-efficient Tucker

decomposition method for large-scale dense tensors. D-Tucker

compresses an input tensor by performing randomized SVD of

matrices sliced from the tensor, and efficiently obtains factor

matrices and a core tensor by 1) avoiding reconstruction from

the compressed data, and 2) careful ordering of computations.

Extensive experiments show that D-Tucker is up to 38 .4×
faster, and requires up to 17.2× less space than existing

methods with little sacrifice in accuracy. Future works include

extending the method for parallel and distributed systems.
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