
VEST: Very Sparse Tucker Factorization of
Large-Scale Tensors

Moonjeong Park*

Pohang University of Science and Technology
Pohang, Republic of Korea

mjeongp@postech.ac.kr

Jun-Gi Jang*

Seoul National University
Seoul, Republic of Korea

elnino4@snu.ac.kr

Lee Sael†
Ajou University

Suwon, Republic of Korea
sael@ajou.ac.kr

Abstract—Given a large tensor, how can we decompose it
to sparse core tensor and factor matrices without reducing
the accuracy? Existing approaches either output dense results
or have scalability issues. In this paper, we propose VEST,
a tensor factorization method for large partially observable
data to output a very sparse core tensor and factor matrices.
VEST performs initial decomposition and iteratively determines
unimportant entries in the decomposition results, removes the
unimportant entries, and updates the remaining entries. To
determine unimportant entries of factor matrices and core tensor,
we define and use the entry-wise ‘responsibility’ of the current
decomposition. For scalable computation, the entries are updated
iteratively using a carefully derived coordinate descent rule in
parallel. Also, VEST automatically searches for the best sparsity
ratio that results in a balanced trade-off between sparsity and
accuracy. Extensive experiments show that our method VEST
produces more accurate results compared to the best performing
competitors for all tested real-life datasets.

Index Terms—Scalable tensor factorization, Tucker, Sparsity

I. INTRODUCTION

How can we factorize a large tensor to sparse core tensor

and factor matrices without sacrificing accuracy and apply

them on partially observable tensors? A tensor is a powerful

tool for representing multi-modal data. Analysis of tensors

often evolves tensor factorization. A Tucker factorization is

widely used tensor factorization form that outputs a core tensor

and factor matrices which reveal the latent relation of the data.

Tucker factorization can also be viewed as a tool for multi-

linear regression problem where only the target values, i.e.,

values of input tensor entries, are known. In this perspective,

the columns of factor matrices act as latent components, their

values as latent feature values, and the cells of the core tensor

as weights of the relations between the latent components [1].

Sparse Tucker factorization aims to output sparse core tensor

and factor matrices for better interpretability. As sparse linear

regression model enhances its interpretability [2], sparse factor

matrices and a core improve interpretability. Sparsity of results

is well known to have various advantages such as improving

interpretability and memory usage. In particular, the effect of

sparsity in improving interpretability has been supported and

exploited by various studies [2]–[9]. Furthermore, real data

are full of missing data (partially observable) and analysis
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methods should have strategies to address the missing data

problem.

There are several approaches for sparsifying Tucker factor-

ization results. The widely used general approach adds an

L1 norm as sparse regularizer in their objective function

[6], [7], [10], [11]. However, the sparsity of a L1-based

factorization results is sensitive to the lambda values, in

which extensive search of appropriate lambda value is

required to obtain requested sparsity. Moreover, in some

cases, it is difficult to obtain a very sparse result with even

a large lambda value. Another general approach removes

elements with small values from the core tensor or the

factor matrices [3], [8], [9]. However, removing such elements

does not necessarily lead to small reconstruction errors, and

thus value-based pruning sacrifices accuracy. In addition to

the two sparsification strategies, CANDECOMP/PARAFAC

(CP) decomposition can also be considered as a sparse

method. More specifically, a CP decomposition can be

considered as a specific type of Tucker factorization that

generates a very sparse core tensor, i.e. a core tensor

with non-zero values only at the super-diagonal positions.

However, CP does not generate sparse factor matrices and

requires additional steps for sparcification [3], [12] There are

also, application-specific approaches that rely on application-

specific assumptions that are not generalizable. Example of

application-specific methods include utilizing domain-specific

knowledge as sparsity constraints [5], constructing factor

matrix from sparse input sampling [4], [13], using smoothing

matrices [14], [15], and learning sparse dictionary for image

data [16]–[18].

In this paper, we propose VEST (VEry Sparse Tucker

factorization), a scalable and accurate Tucker factorization

method to generate sparse factors and a core tensor for

large-scale partially observable input tensor. VEST outputs

very sparse factorization results by carefully determining the

importance of elements of factors and the core and pruning

unimportant ones up till a stopping criterion that determines

a reasonable sparsity-accuracy trade-off. VEST guarantees

that the sparsity does not decrease in the update process by

carefully derived update rules. The entries of factor matrices

and core tensor are updated iteratively using our derived

coordinate descent rules in parallel for scalable computation.
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The code of our proposed method is available at https://

github.com/vestbigcomp/vestbigcomp2020/tree/master.

II. PRELIMINARIES AND RELATED WORKS

We introduce concepts of tensor and its operations, Tucker

factorization, and the standard algorithm for Tucker. Table II

lists the symbols used.

Table I
TABLE OF SYMBOLS AND DEFINITIONS.

Symbol Definition

X input tensor (∈ R
I1×...×IN )

G core tensor (∈ R
J1×...×JN )

N order of X
In, Jn dimensionality of the nth mode of X and G, respectively

A(n) nth factor matrix (∈ R
In×Jn )

a
(n)
injn

(in, jn)th element of A(n)

Ω set of observable entries of X
|Ω| number of observable entries of X

Ω
(n)
in

set of observable entries whose nth mode index is in
λ regularization parameter for core and factor matrices

‖X‖F Frobenius norm of tensor X
‖X‖1 sum of absolute values of tensor X
α an entry (i1, ..., iN ) of input tensor X
β an element (j1, ..., jN ) of core tensor G

αin=i an entry (i1, ..., in = i, ..., iN ) of input tensor X
βjn=j an element (j1, ..., jn = j, ..., jN ) of core tensor G

A. Tensor and its Operations

Tensor is a multi-dimensional array that contains numbers.

An ‘order’ or ‘mode’ is the number of tensor dimensions,

where a 1st-order tensor represents a vector and a 2nd-order

tensor represents a matrix. We denote vectors by boldface

lowercase letters (e.g., a), matrices by boldface capital letters

(e.g., A), and three or higher order tensors by boldface Euler

script letters (e.g., X). An entry of a 3rd-order tensor can be

expressed with three indices. For example, the (i1, i2, i3)th

entry of a 3rd-order tensor X ∈ R
I1×I2×I3 is denoted by

xi1i2i3 , where index in spans from 1 to In.

The size of a tensor is often evaluated by the Frobenius

norm. Given an N -order tensor X (∈ R
I1×...×IN ), the

Frobenius norm of X is ||X||F =
√∑

∀α∈X X2
α, where

α = (i1, · · · , iN ) is an index to an entry of input tensor X.

Tensor decomposition often involves matricizations of tensors

and products between a tensor and a matrix. The mode-n
matricization of a tensor X ∈ R

I1×···×IN is denoted as X(n)

and the mapping from an entry (i1, · · · , iN ) of X to an

entry (in, j) of X(n) is given by j = 1 +
∑N

k=1,k �=n[(ik −
1)

∏k−1
m=1,m �=n Im]. Also, the n-mode product of a tensor

X ∈ R
I1×···×IN with a matrix U ∈ R

J×In is denoted

by X ×n U (∈ R
I1×···×In−1×J×In+1×···×IN ). Entrywise, n-

mode product is denoted as (X×n U)i1···in−1jin+1···iN =∑In
i=1(Xαin=iuji).

B. Tucker Factorization
Our proposed method VEST is built on top of Tucker factor-

ization, one of the most popular tensor factorization methods.

Given an N th-order tensor X (∈ R
I1×···×IN ), Tucker factor-

ization approximates X by a core tensor G (∈ R
J1×···×JN ) and

factor matrices {A(n) ∈ R
In×Jn |n = 1 · · ·N} by minimizing

the full reconstruction error:

L(G,A(1), ...,A(N)) = ‖X−G×1A
(1) · · ·×N A(N)‖F . (1)

Typically, a core tensor G is assumed to be smaller and

denser than the input tensor X. Each factor matrix A(n)

represents the latent features of the object related to the nth

mode of X, and each element of a core tensor G indicates

the weights of the relations composed of columns of factor

matrices.
1) Sparsification Strategies: Tucker factorization often

results in dense core and factor matrices. One of the

approaches for sparsifying results is by including a sparsity

constraint in the form of L1 norm, a.k.a., Lasso, into the

objective function (e.g., L = Eq. (1)).

L1(G,A
(1), ...,A(N)) = L+ λ(‖G‖1 +

N∑
n=1

‖A(n)‖1)

Another approach for sparsifying results is by pruning minimal

elements. That is the value pruning method sets the smallest

s ratio of the elements to zero in the core and factor matrices.
2) Addressing Missing Values: In real-world, data are often

incomplete with several missing entries. To accommodate

for the missing data, we have previously proposed and

validated a partially observable Tucker factorization objective

function [19]–[23].
Given a tensor X (∈ R

I1×...×IN ) with observable entries

Ω, the goal of partially observable Tucker factorization of X,

in combination with the L1 regularization, is to find factor

matrices A(n) (∈ R
In×Jn , n = 1, · · · , N) and a core tensor

G (∈ R
J1×...×JN ) minimizing the following loss:

Given a tensor X with observable entries Ω, the goal of

partially observable Tucker factorization via Lasso of X (L1
method in Fig. 1) is to find factor matrices and a core tensor

that minimizing the following loss:

L1(G,A
(1), ...,A(N)) =

∑
∀α∈Ω

⎛
⎝Xα −

∑
∀β∈G

Gβ

N∏
n=1

a
(n)
injn

⎞
⎠

2

+ λ(‖G‖1 +
N∑

n=1

‖A(n)‖1)
(2)

Again the reconstruction error in Eq. (2) depends only on

the observable entries of X, and L1 regularization is used to

enforce sparsity.
3) Reconstruction of Tucker Tensor: Evaluation of tensor

decomposition and the prediction of the missing entry values

(a.k.a., tensor completion) involves reconstruction. Given core

tensor G and factor matrices A(n), the reconstruction of the

original tensor X is defined as X ≈ G×1 A
(1) · · · ×N A(N).
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(j) Movie

Figure 1. Sparsity and accuracy of VEST and competitors on 2-small and 3 large-scale real-world datasets. VEST generates sparse and accurate results
that generalize well on unseen data: points of VEST are located in the bottom right region (the best point) of both RE (reconstruction error) and Test RE
plots. Compared to competitors, i.e, ParCube, APG-NTD, PTucker-Approx, TTp, and Sparse CP, VEST is at least 2.6 times sparser and at least 2.2 times
more accurate, i.e. (c) VEST compared to ParCube. Also, compared to different sparsification strategies , VEST provides lower TestRE and RE while having
similar sparsity.

III. PROPOSED METHOD

In this section, we propose VEST (Very Sparse Tucker

factorization), a method for partially observed large scale

tensor that results in a very sparse core tensor and very sparse

factor matrices. Sparsity of the results improves interpretability

and provides a scheme for better compression. To maximize

sparsity without losing accuracy, VEST iteratively updates

core tensor and factor matrices, and prunes unimportant

elements from the core tensor and factor matrices. However,

there are several challenges in designing an efficient sparse

update and pruning rules.

• Evaluating importance of elements. Vital elements of

core tensor and factor matrices should not be pruned.

How can we evaluate their importance?

• Automatically determining the sparsity. There is a

trade-off relationship between sparsity and accuracy. How

can we automatically determine an appropriate sparsity

which gives a good balance with regards to accuracy?

• Updating factors while guaranteeing non-decreasing
sparsity. The update process of factors and the core in the

regular Tucker-ALS does not guarantee that the sparsity

improves over the update process. How can we guarantee

that update rules improve the sparsity while avoiding the

stability problem?

We have the following main ideas to address the above

challenges which we describe in detail in later subsections.

• Design responsibility indicator to evaluate contribution

of each element on the accuracy (Section III-B).

• Design auto-search algorithm to find a good sparsity

that resides near the maximum sparsity just before the

reconstruction error shoots up (Section III-C).

• Design element-wise update rules with slowly growing
sparsity strategy to independently update each element

of factor matrices and the core tensor while addressing the

stability problem. Element-wise update rules guarantee

non-decreases of the sparsity by keeping pruned elements

to zeros while slowly growing sparsity strategy alleviates

the stability problem (Sections III-D and III-E).

A. Overview

VEST is a scalable Tucker factorization method for partially

observable tensors that results in a very sparse core tensor

and very sparse factor matrices (see Algorithm 1). First,

VEST initializes all elements of the core tensor and factor

matrices with random real values between 0 and 1 (line

1). Next, VEST iteratively updates the core tensor and

factor matrices while pruning their elements (lines 3-7). In

lines 3-4, VEST updates unpruned elements of the core

tensor and factor matrices by element-wise update rules

(Section III-D), guaranteeing that the sparsity non-decreases.

Then VEST prunes unimportant elements in the core tensor

and factor matrices (lines 6-7). Importance of each element

e is evaluated by responsibility Resp(e) which indicates how

largely the element contributes to the accuracy (Section III-B).

should prune() function determines when to stop pruning:

if desired sparsity s is achieved (in the manual version

VESTman) or the reconstruction error shows a rapid increase

(VESTauto, i.e., default VEST). Motivated from simulated

Authorized licensed use limited to: Seoul National University. Downloaded on August 19,2021 at 10:54:48 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: VEST: Very Sparse Tucker Factorization

Input : Tensor X ∈ R
I1×I2×···×IN , core tensor

dimensionality J1, ..., JN , and target sparsity

s (if manual-mode).

Output: Sparse factor matrices

A(n) ∈ R
In×Jn(n = 1, · · · , N) and sparse

core tensor G ∈ R
J1×J2×···×JN .

1 randomly initialize A(n)(n = 1, · · · , N) and G; set pr
= INIT PR, iterN = 0.

2 repeat
3 update unpruned elements of A(n)(n = 1, · · · , N)

� Algorithm 3
4 update unpruned elements of G � (19)

5 compute RE using observable entries Ω � Eq.(5)

6 if should prune() then
7 prune pr=min(INIT PR*iterN , MAX PR) ratio of

elements e in A(n) and G based on Resp(e)
of the elements � Algorithm 2

8 until RE converges or iterN++ exceeds maximum
iteration;

9 for n = 1...N do
10 U(n)B(n) ← A(n), and set A(n) ← U(n)

11 G ← G×n B(n)

annealing, we start with minimal pruning rates gradually

increase the pruning rate as iterations proceed (line 7); this

enables to explore larger search space in the beginning, while

reducing the extent of the search to reduce to a minimum

in the later iterations such that instability of pruning on

reconstruction error is alleviated. However, in the real-world

datasets the hyparameters INITPR/MAXPR did not notably

change the sparsity or the accuracy. The iterations proceed

until the reconstruction error converges or the maximum

iteration is reached. Finally, VEST standardizes all columns

of factor matrices such that their norm is equal to one and

updates core tensor accordingly (lines 9-11). Specifically, A(n)

is decomposed to U(n) ∈ R
In×Jn and B(n) where columns

of U(n) are unit vectors and B(n) is a diagonal matrix whose

(i, i)th element is the norm of A(n)’s ith column. The core

tensors are updated to maintain the same reconstruction error

[24].

B. Evaluating Importance of Elements by Responsibility

In this section, we evaluate the importance of elements

of factor matrices and core tensor for pruning. A naive

approach considers elements of factor matrices and core

tensor which have small values as unimportant elements.

However, pruning of a small valued element could provoke

large reconstruction error when its overall affect is large

(an example provided in the Supplementary [25]). Therefore,

VEST calculates the responsibility of each element of factor

matrices and core tensor by considering the overall affect of an

element in the reconstruction. That is, responsibility represents

its contribution to the overall reconstruction accuracy over the

observable elements of the input tensor to determine and prune

unimportant elements. The intuition is that reconstruction error

increases significantly when a vital element of the core tensor

or factor matrices is set to zero, i.e., pruned. On the other

hand, if the reconstruction error after pruning is similar or

even smaller to that before pruning, the pruned element is

insignificant. Formally, the responsibility is defined as follows.

Definition 1 (Responsibility) Responsibility of an element e in

a factor matrix (e = a
(n)
ij ) or core tensor (e = Gγ) is given by

Resp(e) =
RE(e)−RE

RE
, (3)

where

RE =√√√√ ∑
∀α=(i1,··· ,iN )∈Ω

(
Xα − ∑

∀β=(j1,··· ,jN )∈G

Gβ

N∏
n=1

a
(n)
injn

)2

||X||F
(5)

is the normalized reconstruction error over the observable

entries Ω of the original tensor X, and RE(e) is residual

reconstruction error defined when the element e is set to zero

(Eq. (7) and (9)). �
Definition 2 (Residual reconstruction error) The residual

reconstruction error RE(Gγ) for (j1, ..., jN )th element γ in

core tensor G is as follows:

(RE(Gγ))
2 =∑

∀α=(i1,··· ,iN )∈Ω

(
Xα − ∑

∀β=(j1,··· ,jN ) �=γ∈G

Gβ

N∏
n=1

a
(n)
injn

)2
||X||2F

(7)

The residual reconstruction error RE(a
(n)
i,j ) for an (i, j)th

element a
(n)
i,j in a factor matrix A(n) is as follows:

(RE(a
(n)
ij ))2 = RE2+∑

∀α∈Ω
(n)
in

(
2 · (Xα −B(α)) +Bjn=j(α)

) · (Bjn=j(α))

||X||2F
,

(9)

where B(α) is the entry-wise reconstruction defined as

Xα=(i1,··· ,iN ) ≈ B(α) =
∑

∀β=(j1,··· ,jN )∈G

Gβ

N∏
n=1

a
(n)
injn

, (10)

and Bjn=j(α) and Bjn �=j(α) are the partial reconstruction
functions defined as

Bjn=j(α) =
∑

∀βjn=j

Gβjn=j

N∏
n=1

a
(n)
injn

Bjn �=j(α) =
∑

∀βjn �=j

Gβjn �=j

N∏

n=1

a
(n)
injn

.

(11)
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The proof of correctness for the derivation of the Eq.(9) is

provided in the Supplementary [25]. Note that both definitions

are derived from the element-wise reformulation of the recon-

struction error.

C. Pruning

VEST obtains sparse factor matrices and core tensor by

a novel pruning method. After calculation of responsibility

values, VEST prunes core tensor and factor matrices, i.e, the

elements of factor matrices and core tensor that have small

responsibility values are set to zero. Pruning technique allows

VEST to be insensitive to the L1 regularization parameter λ
while still generating sparse factor matrices and core tensor.

Pruning is performed iteratively, each time after the core

tensor and factor matrices are updated. The process of pruning

an element consists of setting the value of the element to zero

and marking the element as pruned in a marking table. The

marked elements are excluded from the update step. To prune

elements with low responsibility values, VEST sorts elements

of the core tensor and each factor matrix, respectively, by

the responsibility Resp(e) in ascending order. Then, VEST

prunes smallest pr|G| elements from core tensor and smallest

pr|A(n)| from each factor matrix, where pr is the pruning rate

of the current iteration. VEST starts with a very small pruning

rate pr (INIT PR) and slowly increases pr until maximum

pruning rate (MAX PR) is reached. The default values of

INIT PR and MAX PR are set to 0.01 and 0.1, respectively.

The slowly increasing sparsity strategy allows for elements

with potential importance to the updated while iteratively

pruning only the fraction of elements that we are certain are

not important as the confidence of the certainty increases with

the iteration (increasing pruning rate).

To determine when to stop pruning, VESTauto (default

VEST) determines the final sparsity automatically by tracking

changes in the reconstruction error and determines to stop

pruning when an elbow point of the reconstruction error

curve is reached. The elbow point is estimated as the point

when the second derivative of the RE curve, estimated as

(REt +REt−2 − 2 ∗REt−1)/prt where REt and prt are RE

and pruning rate at tth iteration, respectively, exceeds a small

threshold (0.05 used). For testing, we also provide manual

version of VEST, i.e., VESTman takes a target sparsity s as an

input from the user and stops pruning when the total sparsity

reaches s. With the above conditions are satisfied, VEST

iteratively updates factor matrices and core tensor without

pruning until reconstruction error converges or the number

of iterations exceed maximum iteration. The last update step

without pruning can be considered as a fine tuning step.

D. Sparse Element-wise Update Rule

VEST updates elements of the core tensor and factor

matrices based on a coordinate descent approach in parallel.

It enables VEST to update the core tensor and factor

matrices without changing the value of the pruned elements,

i.e., guaranteeing non-decreasing sparsity. VEST checks the

marking table which indicates whether elements have been

pruned, and updates only the un-pruned elements. The update

of an element is performed with observable tensor entries and

fixed values of other elements in the factor matrices and the

core tensor. The update rules for the core tensor and factor

matrices are derived by setting the partial derivative of the loss

function to zero and solving for each element. Advantages of

our update rules are that 1) accuracy is high and convergence

is faster,2) parallelization and selective updates are possible

because all the elements are independently updated, and 3)

the size of intermediate data is small, making the algorithm

scalable.
For an element a

(n)
injn

of factor matrix A(n), the element-

wise update rule with L1 regularization is provided in the

following Lemmas.

Lemma 1 (Update rule for factor matrix with L1 regularization)

arg min
a
(n)
injn

L1(G,A
(1), ...,A(N))

=

⎧⎪⎨
⎪⎩
(λ− gfm)/dfm if gfm > λ

−(λ+ gfm)/dfm if gfm < −λ

0 otherwise

(13)

where

gfm = 2
( ∑
∀α∈Ω

(n)
in

Xαδ
(n)
α (jn)

)− ( ∑
∀t �=jn

v
(n)
injn

(t) · a(n)int

)
,

(14)

dfm = 2v
(n)
injn

(jn), (15)

v
(n)
injn

is a length Jn vector whose jth element is

v
(n)
injn

(j) =
∑

∀α∈Ω
(n)
in

δ(n)α (j)δ(n)α (jn), (16)

δ
(n)
α is a length Jn vector whose jth element is

δ(n)α (j) =
∑

∀βjn=j∈G

Gβjn=j

∏
k �=n

a
(k)
ikjk

, (17)

Ω
(n)
in

is the subset of Ω whose index of nth mode is in, and

λ is a regularization parameter. �
For an element Gβ of core tensor, the element-wise update

rule with L1 regularization is as follows:

Lemma 2 (Update rule for core tensor with L1 regularization)

arg min
Gβ

L1(G,A
(1), ...,A(N))

=

⎧⎪⎨
⎪⎩
(λ− gc)/dc if g > λ

−(λ+ gc)/dc if g < −λ

0 otherwise

(19)

where gc = −2
∑

∀α∈Ω

(
Xα − ∑

∀γ �=β
Gγ

N∏
n=1

a
(n)
injn

) ·
N∏

n=1
a
(n)
injn

, and

dc = 2
∑

∀α∈Ω

( N∏
n=1

a
(n)
injn

)2
. �
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Algorithm 2: Parallel Pruning

Input : Tensor X ∈ R
I1×···×IN , factor matrices

A(n) ∈ R
In×Jn(n = 1, · · · , N), core tensor

G ∈ J1 × ...× JN , and pruning rate pr.
Output: Pruned A(n)(n = 1, · · · , N) and G

1 for α = ∀(i1, ..., iN ) ∈ Ω do � in parallel

2 calculate B(α) =
∑

∀β=(j1,··· ,jN )∈G

Gβ

N∏

n=1

a
(n)
injn

3 calculate Xα −B(α) � Eq.(5)

4 for β = ∀(j1, ..., jN ) ∈ G do � in parallel

5 calculate
∑

∀α∈Ω

(Xα −B(α) + Gβ

N∏

n=1

a
(n)
injn

)

6 calculate Resp(Gβ) � Eq.(3), (7)

7 sort core tensor elements by Resp(Gβ) values in an
ascending order

8 for in = 1...In do
9 for jn = 1...Jn do � in parallel

10 for α = ∀(i1, ..., iN ) ∈ Ω
(n)
in

do
11 calculate

(2(Xα −B(α)) +Bjn=j(α)) ·Bjn=j(α)

12 calculate Resp(a
(n)
injn

) � Eq.(3), (9)

13 sort factor matrix elements by Resp(a
(n)
ij ) values in an

ascending order

14 prune smallest pr|G| and pr|A(n)| elements of G and

A(n)(n = 1, ..., N), respectively.

The proofs of Lemmas 1 and 2 are provided in the

Supplementary [25].

E. Parallel Update Algorithms

Responsibility calculation and factor matrices updates are

performed in parallel. Algorithm 2 describes the pruning

process where responsibility values of the core tensor and

factor matrices are calculated in parallel for each observable

entries of the input tensor. Note that the use of B(α) in line 5

enabled fast computing of Resp(Gβ) in line 6; for a given β in

line 4, computing line 5 requires O(|Ω|) rather than O(|Ω||G|)
since there is no need to compute

∑
∀β �=γ∈G Gγ

∏N
n=1 a

(n)
injn

in Eq. (7) from scratch.

The element-wise update of factor matrix A(n) is performed

in parallel for each rows of factor matrices using L1 regulari-

zation (see Algorithm 3). Elements of a core tensor are

highly dependent on each other and thus updating them cannot

be made parallel, although a part of required computations

can be made parallel (line 1 of Algorithm 4). However,

considering that typical size |G| of the core tensor is small, the

core tensor updates are a minor burden in the computational

process. Element-wise update of the core tensor G using L1

regularization is detailed in Algorithm 4.

IV. EXPERIMENTS

We conduct performance comparison to evaluate how

accurately and sparsely VEST decompose a given tensor

compared to other methods.

Algorithm 3: Parallel element-wise factor matrix

update

Input : Tensor X ∈ R
I1×···×IN , factor matrices

A(n) ∈ R
In×Jn(n = 1, · · · , N), and core tensor

G ∈ J1 × ...JN .
Output: Updated factor matrices

A(n) ∈ R
In×Jn(n = 1, · · · , N)

1 for n = 1...N do � nth factor matrix
2 for in = 1...In do � in parallel
3 for jn = 1...Jn do
4 if a

(n)
injn

is pruned then
5 continue

6 for α = ∀(i1, ..., iN ) ∈ Ω
(n)
in

do
7 for β = ∀(j1, ..., jN ) ∈ G do � compute

δ

8 δ
(n)
α (jn) ←− δ

(n)
α (jn) + Gβ

∏

∀k �=n

a
(k)
ikjk

9 accumulate Xαδ
(n)
α (jn), and update v

(n)
injn

� Eq.(16),(17)

10 update a
(n)
injn

using Eq. (13) for L1

Algorithm 4: Parallel element-wise core tensor update

Input : Tensor X ∈ R
I1×···×IN ,

factor matrices A(n) ∈ R
In×Jn(n = 1, · · · , N),

and
core tensor G ∈ J1 × ...JN .

Output: Updated core tensor G ∈ J1 × ...JN

1 for α = ∀(i1, ..., iN ) ∈ Ω do � in parallel

2 calculate B(α) =
∑

∀β=(j1,··· ,jN )∈G

Gβ

N∏

n=1

a
(n)
injn

3 for β = ∀(j1, ..., jN ) ∈ G do

4 calculate
∑

∀α∈Ω

(Xα −B(α) + Gβ

N∏

n=1

a
(n)
injn

) ·
N∏

n=1

a
(n)
injn

5 calculate
∑

∀α∈Ω

(
N∏

n=1

a
(n)
injn

)2

6 update Gβ using Eq. (19) for L1

A. Experimental Settings

Datasets. We used three real-world datasets and synthetic

datasets as summarized in Table II. The real-world datasets are

MovieLens1, Yelp2, and AmazonFood3. MovieLens is a 4th

order tensor of movie ratings containing (user, movie, year,

hour). Yelp is a 3rd order tensor of business services rating

data containing (user, business, year-month). AmazonFood

is a 3rd order tensor of food review scores from Amazon

containing (product, user, year-month). As several sparse

methods are not scalable and work only on three-order tensor,

we used subsets of Yelp-s and AmazonFood-s to compare with

all competitors and use the three full-scale data for comparing

methods that are scalable.

1https://grouplens.org/datasets/movielens/
2http://www.yelp.com/dataset challenge/
3 http://snap.stanford.edu/data/web-FineFoods.html
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Table II
SUMMARY OF DATASETS AND HYPERPARAMETERS USED.

Name Order Dimensionality Ranks |Ω| |Ω|test
MovieLens 4 138K × 27K × 21× 24 6× 6× 2× 2 18M 2M
Yelp 3 71K × 16K × 108 10× 10× 10 301K 33K
AmazonFood 3 74K × 256K × 143 9× 9× 14 511K 57K
Yelp-s 3 50× 50× 10 5× 5× 5 235 32
AmazonFood-s 3 50× 50× 10 5× 5× 5 444 51

Competitors. We compared VEST with five published

methods for sparse results as follows.

• PTucker-Approx [22] : scalable Tucker decomposition

method for partially observable tensor.

• TTP [8]: A tensor decomposition method that results in

sparse components based on value pruning.

• Sparse CP [3]: CP decomposition method with lasso

penalty.

• ParCube [12] : scalable CP decomposition method to

obtain sparse factor matrices.

• APG-NTD [26] : sparse non-negative tucker decomposi-

tion method that utilizes special Kronecker product

structure.

We also compare VEST with the following four sparsification

strategies which are methods implemented in the VEST

framework and differs only in the sparsification strategy, i.e.,

they are implemented using the VEST missing value support

and paralleling strategies.

• Tucker-ALS [1]: Conventional Tucker factorization

method (HOOI).

• L1 (Lasso): A Tucker factorization method with lasso

sparsity constraint implemented as VESTman with

sparsity s = 0.

• ValuepruningL1 and ValuepruningLF : A Tucker factor-

ization method with value pruning at the last step imple-

mented as VESTman with sparsity s = 0 followed by

value pruning with ratio 0.6 for L1 and LF losses.

Environment. VEST was written in C++ with OPENMP

[27] and ARMADILLO [28] libraries for parallelization. We

initialize factor matrices and core tensor using frand()
function provided by C++. Methods L1 (Lasso) and Value

Pruning were run on VEST framework with the difference just

in the pruning approaches. We used the codes provided by the

authors for TTP [8] (R) and Sparse CP [3] (Matlab). Tucker-

ALS was performed via Tensor Toolbox for Matlab [29]. All

experiments were done on a single machine equipped with an

Intel Xeon E5-2630 v4 2.2GHz CPU (10 cores/20 threads)

and 512GB memory. All reported measures are averages of

five runs, unless otherwise stated.

B. Performance Comparison
We compared the accuracy and sparsity VESTauto (default

VEST) with those of the competitors on 5 real world datasets:

Yelp-s, AmazonFood-s, Yelp, AmazonFood, and MovieLens

(Table II). Since TTP, Sparse CP, Tucker-ALS, and APG-

NTD have scalability issues and are limited to order three

tensors, those are compared with VEST on only Yelp-s and

AmazonFood-s datasets.

We measured and compared normalized test cell reconstruc-

tion errors over observable entries in input tensors. VEST has

a better performance than other methods in terms of sparsity

and error as VEST is the closest method to the bottom-

right region that indicates the best point. As shown in Fig. 1,

VEST decomposed a given tensor with up to 13.4 times lower

TestRE compared to other methods, excluding L1 (VEST w.o.

pruning), at a similar sparsity with little difference between

each other. Fig. 1 also shows that at a similar TestRE value,

VEST outputs up to 2.6 times more sparse factor matrices and

core tensor compared to other methods, where the sparsity

is measured as the ratio of number of nonzero values in

G and A(n) over |G| + |∑N
n=1 A

(n)|. Since VEST exploits

the responsibility values to update and prune factor matrices

and core tensor, VEST becomes a closer method to the best

point than L1, Value Pruning, and PTucker-Approx. For all

datasets, TTP, Sparse CP, Tucker-ALS, and APG-NTD achieve

higher errors than VEST since they deal with the values of

missing entries as zero and then compute tensor factorization

for data including observable data and an enormous number of

zeros. Moreover, they also have scalability issues so that they

are compared with VEST on only Yelp-s and AmazonFood-

s datasets. Although the factor matrices of ParCube are very

sparse, ParCube which is sampling-based CP decomposition

achieves a high error. ParCube focuses on analyzing sparse

factor matrices, rather than predicting missing values.

V. CONCLUSION

We proposed VEST, a very-sparse Tucker factorization

method for sparse and partially observable tensors. By deriving

the element-wise partial differential equations, determining

the importance of elements by responsibilities, and parallel

distribution of computational work, VEST successfully offers

very sparse and accurate results that are applicable for large

partially observable tensors. VEST generates sparser and more

accurate results for partially observable tensors compared

to best performing sparse factorization competitors. Future

works include better initialization for Tucker factorization,

integration of prior knowledge, and effective visualization of

tensor results.
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