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ABSTRACT
Given a time-series vector, how can we efficiently detect anom-

alies? A widely used method is to use Fast Fourier transform (FFT)

to compute Fourier coefficients, take first few coefficients while

discarding the remaining small coefficients, and reconstruct the

original time series to find points with large errors. Despite the

pervasive use, the method requires to compute all of the Fourier
coefficients which can be cumbersome if the input length is large

or when we need to perform many FFT operations.

In this paper, we propose Partial Fourier Transform (PFT), an ef-

ficient and accurate algorithm for computing only a part of Fourier

coefficients. PFT approximates a part of twiddle factors (trigono-

metric constants) using polynomials, thereby reducing the com-

putational complexity due to the mixture of many twiddle factors.

We derive the asymptotic time complexity of PFT with respect

to input and output sizes, and tolerance. We also show that PFT

provides an option to set an arbitrary approximation error bound,

which is useful especially when the fast evaluation is of utmost

importance. Experimental results show that PFT outperforms the

current state-of-the-art algorithms, with an order of magnitude

of speedup for sufficiently small output sizes without sacrificing

accuracy. In addition, we demonstrate the accuracy and efficacy

of PFT on real-world anomaly detection, with interpretations of

anomalies in stock price data.

CCS CONCEPTS
• Theory of computation→ Numeric approximation algo-
rithms; •Mathematics of computing→ Time series analysis; •
Computing methodologies→ Anomaly detection.
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1 INTRODUCTION
How can we efficiently compute a specified part of Fourier coef-

ficients of a given time-series vector? Discrete Fourier transform

(DFT) is a crucial task in many data mining applications, including

anomaly detection [12, 23, 24], latent pattern extraction [22, 26, 34],

data center monitoring [18], and image processing [28]. Notably,

in many such applications, it is well known that the DFT results in

strong “energy compaction” or “sparsity” in the frequency domain.

That is, the Fourier coefficients of data are mostly small or equal

to zero, having a much smaller support compared to the input size.

Moreover, the support can often be specified in practice (e.g., a few

low-frequency coefficients around the origin). These observations

arouse a great interest in an efficient algorithm which is capable of

computing only a specified part of Fourier coefficients. Accordingly,

various approaches have been proposed to address the problem,

which include Goertzel algorithm [3, 8], Subband DFT [11, 27], and

Pruned FFT [1, 16, 19, 29, 31]. However, these methods turn out to

be not the successful substitutes for FFT in practice. Indeed, the

output size for which they become practical (faster than FFT) is

so small compared to the input size that FFT often shows smaller

running times even though it computes all the coefficients.

In this paper, we propose Partial Fourier Transform (PFT), an

efficient and accurate algorithm for computing a part of Fourier

coefficients. Specifically, we consider the following problem: given
a complex-valued vector 𝒂 of size 𝑁 , a non-negative integer𝑀 , where
𝑀 ≪ 𝑁 , and an integer 𝜇, estimate the Fourier coefficients of 𝒂 for the
interval [𝜇 −𝑀, 𝜇 +𝑀]. Our PFT is of remarkably simple structure,

composed of several “smaller” FFTs combined with linear pre- and

post-processing steps. Consequently, PFT reduces the number of

operations from 𝑂 (𝑁 log𝑁 ) to 𝑂 (𝑁 + 𝑀 log𝑀) which is, to the

best of our knowledge, the lowest arithmetic complexity achieved

so far. Besides that, most subroutines of PFT are already highly

optimized and easy to be parallelized (e.g., matrix multiplication

and FFT), thus the arithmetic gains are readily turned into actual

run-time improvements. Note that PFT is an approximate method.

However, the Fourier coefficients can be evaluated to arbitrary nu-

merical precision with PFT by changing a hyperparameter, trading

off running time and error. Experimental results show that PFT

outperforms the state-of-the-art FFT libraries, FFTW [7] and Intel

Math Kernel Library as well as Pruned FFTW, with an order of

magnitude of speedup without sacrificing accuracy. We also show

the accuracy and efficacy of PFT on real-world anomaly detection

tasks, and present interesting discoveries on how an anomalous

point in stock price data is related to a real-life incident.

Our main contributions are summarized as follows:

• Algorithm.We propose PFT, a novel algorithm for computing a

part of Fourier coefficients, achieving the lowest time complexity.

• Analysis. We provide theoretical analysis on the arithmetic

complexity of PFT and its approximation bound.
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Figure 1: (a) Running time vs. input size for target range 𝑅
0,29

with {S𝑛}22𝑛=12 datasets, and (b) running time vs. output size
for fixed input size 222.We set the precision of all themethods
the same, by making the relative error strictly less than 10

−6.
Note that PFT significantly outperforms competitors when
the output size is smaller than the input size, which is exactly
our target task.

• Speed and Accuracy. PFT shows state-of-the-art speed on both

synthetic and real-world datasets without sacrificing accuracy

(see Figure 1).

• Application.We conduct anomaly detection on real-world datasets,

and present discovery results verifying that our algorithm accu-

rately and quickly finds anomalies.

Table 1 summarizes the symbols used. The code and datasets are

available at https://github.com/snudatalab/PFT.

2 RELATEDWORKS
We describe the related works on this paper.

2.1 Existing Methods
We describe various existing approaches for computing partial

Fourier coefficients, and compare them with our proposed method.

Fast Fourier transform. One may consider just using Fast

Fourier transform (FFT) and discarding the unnecessary coeffi-

cients, where FFT efficiently computes the full DFT, reducing the

arithmetic cost from naïve𝑂 (𝑁 2) to𝑂 (𝑁 log𝑁 ). Such an approach

has two major advantages: (1) it is straightforward to implement,

and (2) the method often outperforms the competitors because it di-

rectly employs FFT which has been highly optimized over decades.

Therefore, we provide extensive comparisons of PFT and FFT both

theoretically and experimentally. In particular, we show that PFT

outperforms the FFT by orders of magnitude when the output size

is small enough (< 10%) compared to the input size (Section 4.2).

Goertzel algorithm. Goertzel algorithm [3, 8] is one of the first

methods devised for computing only a part of Fourier coefficients.

The technique is essentially the same as computing the individual

coefficients of DFT, thus requiring 𝑂 (𝑀𝑁 ) operations for𝑀 coef-

ficients of an input with size 𝑁 . Specifically, theoretical analysis

represents “the𝑀 at which the Goertzel algorithm is advantageous

over FFT” as 𝑀 < 2 log𝑁 [32]. For example, with 𝑁 = 2
22
, the

Goertzel algorithm becomes faster than FFT only when 𝑀 < 44,

while PFT outperforms FFT for 𝑀 < 2
19 = 524288 (Figure 1(b)).

Table 1: Table of symbols.

Symbol Definition

𝜔𝑛 𝑛-th primitive root of unity

𝒂 Fourier coefficient of 𝒂
E(𝒂) estimated Fourier coefficient of 𝒂
𝑁 input size descriptor

𝑀 output size descriptor

𝜇 center of target range

𝑅𝜇,𝑀 target range [𝜇 −𝑀, 𝜇 +𝑀] ∩ Z
𝑝, 𝑞 divisors of 𝑁

𝑟 number of approximating terms

𝜖 tolerance

∥ · ∥𝑅 uniform norm restricted to 𝑅 ⊆ R
𝑃𝛼 set of polynomials on R of degree at most 𝛼

P𝛼,𝜉,𝑢
best polynomial approximation to 𝑒𝑢𝑖𝑥 out of 𝑃𝛼
under restriction |𝑥 | ≤ |𝜉 |

𝜉 (𝜖, 𝑟 ) sup{𝜉 ≥ 0 : ∥P𝑟−1,𝜉,𝜋 (𝑥) − 𝑒𝜋𝑖𝑥 ∥ |𝑥 | ≤𝜉 ≤ 𝜖}
𝑤𝜖,𝑟, 𝑗 𝑗-th coefficient of P𝑟−1,𝜉 (𝜖,𝑟 ),𝜋

A few variants which improve the Goertzel algorithm have been

proposed [2]. Nevertheless, the performance gain is only by a small

constant factor, thus they are still limited to rare scenarios where a

very few number of coefficients are required.

Subband DFT. Subband DFT [11, 27] consists of two stages

of algorithm: Hadamard transform that decomposes the input se-

quence into a set of smaller subsequences, and correction stage for

recombination. The algorithm approximates a part of coefficients

by eliminating subsequences with small energy contribution, and

manages to reduce the number of operations to 𝑂 (𝑁 +𝑀 log𝑁 ).
Apart from the arithmetic gain, however, there is a substantial issue

of low accuracy with the Subband DFT. Indeed, experimental results

[11] show that the relative approximation error of the method is

around 10
−1

(only one significant figure) regardless of output size.

Moreover, with PFT, the Fourier coefficients can be evaluated to ar-

bitrary numerical precision, which is not the case for Subband DFT.

Such limitations often preclude one from considering the Subband

DFT in applications that require a certain degree of accuracy.

Pruned FFT. FFT pruning [1, 16, 19, 29, 31] is another technique

for the efficient computation of partial Fourier coefficients. The

method is a modification of the standard split-radix FFT, where the

edges (operations) in a flow graph are pruned away if they do not

affect the specified range of frequency domain. Besides being almost

optimized (it uses FFT as a subroutine), the FFT pruning algorithm

is exact and reduces the arithmetic cost to𝑂 (𝑁 log𝑀). Thus, along
with the full FFT, the pruned FFT is reasonably the most appropriate

competitor of our proposed method. Through experiments (Section

4.2), we show that PFT consistently outperforms the pruned FFT,

significantly extending the range of output sizes for which partial

Fourier transform becomes practical.

Finally, we mention that there have been other approaches but

with different settings. For example, [9, 10] and [13] propose Sparse

Fourier transform, which estimates the top-𝑘 (the 𝑘 largest in mag-

nitude) Fourier coefficients of a given vector. The algorithm is useful

when there is prior knowledge of the number of non-zero coeffi-

cients in frequency domain. Note that our setting does not require

any prior knowledge of the given data.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1310

https://github.com/snudatalab/PFT


2.2 Applications of FFT
We outline various applications of Fast Fourier transform, to which

partial Fourier transform can potentially be applied. FFT has been

widely used for anomaly detection [12, 23, 24]. [12] and [24] detect

anomalous points of a given data by extracting a compact represen-

tation using Spectral Residual (SR) based on FFT. [23] uses FFT to

detect local spatial outliers which have similar patterns within a

region but different patterns from the outside. FFT also serves as

the basis for discovering latent patterns [22, 26, 34]. [34] employs

FFT to model multi-frequency trading patterns from past market

data for stock price prediction. [26] presents an FFT-based approach

for automatic sleep stage scoring and apnea-hypopnea detection

by extracting meaningful features from EGG, ECG, EOG and EMG

data. [22] attempts to detect fake news by designing a CNN-based

network that captures the complex patterns of fake images in the

frequency domain. Several works [15, 20, 21, 33] exploit FFT for

efficient operations. [20] leverages FFT to efficiently compute a

polynomial kernel used with support vector machines (SVMs). [15]

proposes an efficient Tucker decomposition method using FFT, and

[33] applies FFT to a circulant linear system for seasonal-trend

decomposition. In addition, FFT has been used for fast training of

convolutional neural networks [17, 25] and an efficient recommen-

dation model on a heterogeneous graph [14].

3 PROPOSED METHOD
We propose PFT, an efficient and accurate algorithm for computing

a specified part of Fourier coefficients. The main challenges and

our approaches are as follows:

(1) How can we extract essential information for a specified
output? Considering that only a specified part of coefficients

are needed, we should find an algorithm requiring fewer opera-

tions than the direct use of conventional FFT. This is achievable

by carefully modifying the Cooley-Tukey algorithm, finding

smooth twiddle factors (trigonometric factors), and approximat-

ing them using polynomials (Section 3.1.1).

(2) How can we reduce approximation cost? The approach

given above involves an approximation process, which would

be computationally demanding. We propose using a base ex-
ponential function, by which all data-independent factors can

be precomputed, enabling one to bypass the approximation

problem during the run-time (Sections 3.1.2 and 3.2).

(3) How can we further reduce numerical computation?We

carefully reorder the operations and factorize the terms in order

to alleviate the complexity of PFT. Such techniques separate all

data-independent factors from data-dependent factors, allowing

further precomputation. The arithmetic cost of the resulting

algorithm is𝑂 ((𝑁 +𝑀 log𝑀) log(1/𝜖)), where 𝑁 and𝑀 are in-

put and output size descriptors, respectively, and 𝜖 is a tolerance

(Sections 3.3 and 3.4).

3.1 Approximation of Twiddle Factors
The key of our algorithm is to approximate a part of smooth (less

oscillatory) twiddle factors by using polynomial functions, reducing

the computational complexity of DFT due to the mixture of many

twiddle factors. Using polynomial approximation also allows one

to carefully control the degree of polynomial (or the number of

approximating terms), enabling fine-tuning the output range and

the approximation bound of the estimation. Our first goal is to find

a collection of twiddle factors with small oscillations. This can be

achieved by slightly adjusting the summand of DFT and splitting

the summation as in the Cooley-Tukey algorithm (Section 3.1.1).

Next, using a proper base exponential function, we give an explicit

form of approximation to the twiddle factors (Section 3.1.2).

3.1.1 Smooth Twiddle Factors. Recall that the DFT of a complex-

valued vector 𝒂 of size 𝑁 is defined as follows:

𝑎𝑚 =
∑︁

𝑛∈[𝑁 ]
𝑎𝑛𝜔

𝑚𝑛
𝑁 , (1)

where 𝜔𝑁 = 𝑒−2𝜋𝑖/𝑁 is the 𝑁 -th primitive root of unity, and [𝑁 ]
denotes {0, 1, · · · , 𝑁 − 1} (in this paper, we follow the convention

of viewing a vector 𝒗 = (𝑣0, 𝑣1, · · · , 𝑣𝑁−1) of size 𝑁 as a finite

sequence defined on [𝑁 ]). Assume that 𝑁 = 𝑝𝑞 for two integers

𝑝, 𝑞 > 1. The Cooley-Tukey algorithm [5] re-expresses (1) as

𝑎𝑚 =
∑︁

𝑘∈[𝑝 ]

∑︁
𝑙 ∈[𝑞 ]

𝑎𝑞𝑘+𝑙𝜔
𝑚 (𝑞𝑘+𝑙)
𝑁

=
∑︁

𝑘∈[𝑝 ]

∑︁
𝑙 ∈[𝑞 ]

𝑎𝑞𝑘+𝑙𝜔
𝑚𝑙
𝑁 𝜔𝑚𝑘

𝑝 ,
(2)

yielding two collections of twiddle factors, namely {𝜔𝑚𝑙
𝑁
}𝑙 ∈[𝑞 ] and

{𝜔𝑚𝑘
𝑝 }𝑘∈[𝑝 ] . Consider the problem of computing𝑎𝑚 for−𝑀 ≤ 𝑚 ≤

𝑀 , where𝑀 ≤ 𝑁 /2 is a non-negative integer. In this case, note that

the exponent of 𝜔𝑚𝑙
𝑁

= 𝑒−2𝜋𝑖𝑚𝑙/𝑁
ranges from −2𝜋𝑖𝑀 (𝑞 − 1)/𝑁

to +2𝜋𝑖𝑀 (𝑞 − 1)/𝑁 and the exponent of 𝜔𝑚𝑘
𝑝 = 𝑒−2𝜋𝑖𝑚𝑘/𝑝

ranges

from−2𝜋𝑖𝑀 (𝑝 − 1)/𝑝 to+2𝜋𝑖𝑀 (𝑝 − 1)/𝑝 . Here (𝑞−1)/𝑁(𝑝−1)/𝑝 ∼
1

𝑝 , mean-

ing that the first collection contains smoother twiddle factors com-

pared to the second one. Typically, a smoother function results in a

better approximation via polynomials. In this sense, it is reasonable

to approximate the first collection of twiddle factors in (2) with

polynomial functions, thereby reducing the complexity of the com-

putation due to the mixture of two collections of twiddle factors.

Indeed, one can further reduce the complexity of approximation:

we slightly adjust the summand in (2) as follows.

𝑎𝑚 = 𝜔𝑚
2𝑝

∑︁
𝑘∈[𝑝 ]

∑︁
𝑙 ∈[𝑞 ]

𝑎𝑞𝑘+𝑙𝜔
𝑚 (𝑙−𝑞/2)
𝑁

𝜔𝑚𝑘
𝑝 . (3)

In (3), we observe that the range of exponents of the first collec-

tion {𝜔𝑚 (𝑙−𝑞/2)
𝑁

}𝑙 ∈[𝑞 ] of twiddle factors is [−𝜋𝑖𝑀/𝑝, +𝜋𝑖𝑀/𝑝], a
contraction by a factor of around 2 when compared with the pre-

vious [−2𝜋𝑖𝑀 (𝑞 − 1)/𝑁, +2𝜋𝑖𝑀 (𝑞 − 1)/𝑁 ], hence even smoother

twiddle factors. There is an extra twiddle factor 𝜔𝑚
2𝑝

in (3). Note

that, however, it depends on neither 𝑘 nor 𝑙 , so the amount of the

additional computation is relatively small.

3.1.2 Base Exponential Function. The first collection of twiddle

factors in (3) consists of 𝑞 distinct exponential functions. One can

apply approximation process for each function in the collection;

however, this would be time-consuming. Amore plausible approach

is to 1) choose a base exponential function 𝑒𝑢𝑖𝑥 for a fixed 𝑢 ∈ R,
2) approximate 𝑒𝑢𝑖𝑥 using a polynomial, and 3) exploit a property

of exponential functions: the laws of exponents. Specifically, sup-

pose that we obtained a polynomial P(𝑥) that approximates 𝑒𝑢𝑖𝑥

on |𝑥 | ≤ |𝜉 |, where 𝑢, 𝜉 ∈ R \ {0}. Consider another exponential
function 𝑒𝑣𝑖𝑥 , where 𝑣 ≠ 0. Since 𝑒𝑣𝑖𝑥 = 𝑒𝑢𝑖 (𝑣𝑥/𝑢) , the re-scaled

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1311



polynomial P(𝑣𝑥/𝑢) approximates 𝑒𝑣𝑖𝑥 on |𝑥 | ≤ |𝑢𝜉/𝑣 |. This ob-
servation indicates that once we find an approximation P to 𝑒𝑢𝑖𝑥

on |𝑥 | ≤ |𝜉 | for properly selected 𝑢 and 𝜉 , all elements belong-

ing to {𝜔𝑚 (𝑙−𝑞/2)
𝑁

= 𝑒−2𝜋𝑖𝑚 (𝑙−𝑞/2)/𝑁 }𝑙 ∈[𝑞 ] can be approximated

by re-scaling P. Fixing a base exponential function also enables

precomputing a polynomial that approximates it, so that one can

bypass the approximation problem during the run-time. We fur-

ther elaborate this idea in a rigorous manner after giving a few

definitions (see Definitions 3.1 and 3.2).

Let ∥ · ∥𝑅 be the uniform norm (or supremum norm) restricted

to a set 𝑅 ⊆ R, that is, ∥ 𝑓 ∥𝑅 = sup{|𝑓 (𝑥) | : 𝑥 ∈ 𝑅} and 𝑃𝛼 be the

set of polynomials on R of degree at most 𝛼 .

Definition 3.1. Given a non-negative integer 𝛼 and non-zero real

numbers 𝜉,𝑢, we define a polynomial P𝛼,𝜉,𝑢 as the best approxima-

tion to 𝑒𝑢𝑖𝑥 out of the space 𝑃𝛼 under the restriction |𝑥 | ≤ |𝜉 |:
P𝛼,𝜉,𝑢 := argmin

𝑃 ∈𝑃𝛼
∥𝑃 (𝑥) − 𝑒𝑢𝑖𝑥 ∥ |𝑥 | ≤ |𝜉 |,

and P𝛼,𝜉,𝑢 = 1 when 𝜉 = 0 or 𝑢 = 0. □

[30] proved the unique existence of P𝛼,𝜉,𝑢 , and a few techniques

called minimax approximation algorithms for computing the poly-

nomial are reviewed in [6].

Definition 3.2. Given a tolerance 𝜖 > 0 and a positive integer

𝑟 ≥ 1, we define 𝜉 (𝜖, 𝑟 ) to be the scope about the origin such that

the exponential function 𝑒𝜋𝑖𝑥 can be approximated by a polynomial

of degree less than 𝑟 with approximation bound 𝜖 :

𝜉 (𝜖, 𝑟 ) := sup{𝜉 ≥ 0 : ∥P𝑟−1,𝜉,𝜋 (𝑥) − 𝑒𝜋𝑖𝑥 ∥ |𝑥 | ≤𝜉 ≤ 𝜖}.
We express the corresponding polynomial as P𝑟−1,𝜉 (𝜖,𝑟 ),𝜋 (𝑥) =∑

𝑗 ∈[𝑟 ] 𝑤𝜖,𝑟, 𝑗 · 𝑥 𝑗 . □

In Definition 3.2, we choose 𝑒𝜋𝑖𝑥 as a base exponential func-

tion. The rationale behind is as follows. First, using a minimax

approximation algorithm, we precompute 𝜉 (𝜖, 𝑟 ) and {𝑤𝜖,𝑟, 𝑗 } 𝑗 ∈[𝑟 ]
for several tolerance 𝜖’s (e.g. 10−1, 10−2, · · · ) and positive integer

𝑟 ’s (typically 𝑟 ≤ 25). When 𝑁,𝑀, 𝑝 and 𝜖 are given, we find

the minimum 𝑟 satisfying 𝜉 (𝜖, 𝑟 ) ≥ 𝑀/𝑝 . Then, by the preced-

ing argument, it follows that the re-scaled polynomial function

P𝑟−1,𝜉 (𝜖,𝑟 ),𝜋 (−2𝑥 (𝑙 − 𝑞/2)/𝑁 ) approximates 𝑒−2𝜋𝑖𝑥 (𝑙−𝑞/2)/𝑁 on

|𝑥 | ≤ | 𝑁
2(𝑙−𝑞/2) ·

𝑀
𝑝 | for each 𝑙 ∈ [𝑞] (note that if 𝑙 − 𝑞/2 = 0, we

have | 𝑁
2(𝑙−𝑞/2) ·

𝑀
𝑝 | = ∞). Here |

𝑁
2(𝑙−𝑞/2) ·

𝑀
𝑝 | = |

𝑞

2𝑙−𝑞 · 𝑀 | ≥ 𝑀

for all 𝑙 ∈ [𝑞]. Therefore, we obtain a polynomial approximation

on |𝑚 | ≤ 𝑀 for each twiddle factor in {𝜔𝑚 (𝑙−𝑞/2)
𝑁

}𝑙 ∈[𝑞 ] , namely

{P𝑟−1,𝜉 (𝜖,𝑟 ),𝜋 (−2𝑚(𝑙 − 𝑞/2)/𝑁 )}𝑙 ∈[𝑞 ] . Then, from (3),

𝜔𝑚
2𝑝

∑︁
𝑘∈[𝑝 ]

∑︁
𝑙 ∈[𝑞 ]

𝑎𝑞𝑘+𝑙 P𝑟−1,𝜉 (𝜖,𝑟 ),𝜋 (−2𝑚(𝑙 − 𝑞/2)/𝑁 )𝜔𝑚𝑘
𝑝

(4)

gives an estimation of the coefficient 𝑎𝑚 for −𝑀 ≤ 𝑚 ≤ 𝑀 .

3.2 Arbitrarily Centered Target Ranges
In the previous section, we have focused on the problem of calcu-

lating 𝑎𝑚 for𝑚 belonging to [−𝑀,𝑀]. We now consider a more

general case: let us use the term target range to indicate the range
where the Fourier coefficients should be calculated, and 𝑅𝜇,𝑀 to

denote [𝜇 −𝑀, 𝜇 +𝑀] ∩ Z, where 𝜇 ∈ Z. Note that the previously

given method works only when our target range is centered at

𝜇 = 0. A slight modification of the algorithm allows the target

range to be arbitrarily centered. One possible approach is as fol-

lows: given a complex-valued vector 𝒙 of size 𝑁 , we define 𝒚 as

𝑦𝑛 = 𝑥𝑛 · 𝜔𝜇𝑛

𝑁
. Then, the Fourier coefficients of 𝒙 and 𝒚 satisfy the

following relationship (called Shift Theorem):

𝑦𝑚 =
∑︁

𝑛∈[𝑁 ]
𝑥𝑛𝜔

𝜇𝑛

𝑁
𝜔𝑚𝑛
𝑁 =

∑︁
𝑛∈[𝑁 ]

𝑥𝑛𝜔
(𝑚+𝜇)𝑛
𝑁

= 𝑥𝑚+𝜇 .

Thus, the problem of calculating 𝑥𝑚 for𝑚 ∈ 𝑅𝜇,𝑀 is equivalent to

calculating 𝑦𝑚 for𝑚 ∈ 𝑅0,𝑀 , to which our previous method can be

applied. This technique, however, requires extra 𝑁 multiplications

due to the computation of 𝒚. A better approach, where one can

bypass the extra process during the run-time, is to exploit the

following lemma.

Lemma 1. Given a non-negative integer 𝛼 , non-zero real numbers
𝜉,𝑢, and a real number 𝜇, the following equality holds:

𝑒𝑢𝑖𝜇 · P𝛼,𝜉,𝑢 (𝑥 − 𝜇) = argmin

𝑃 ∈𝑃𝛼
∥𝑃 (𝑥) − 𝑒𝑢𝑖𝑥 ∥ |𝑥−𝜇 | ≤ |𝜉 | . □

Proof. See Supplement A.1. □

This observation implies that, in order to obtain a polynomial

approximating 𝑒𝑢𝑖𝑥 on |𝑥 − 𝜇 | ≤ |𝜉 |, we first find a polynomial

P approximating 𝑒𝑢𝑖𝑥 on |𝑥 | ≤ |𝜉 |, then translate P by −𝜇 and

multiply it with the scalar 𝑒𝑢𝑖𝜇 . Applying this process to the previ-

ously obtained approximation polynomials (see Section 3.1.2) yields

{𝜔𝜇 (𝑙−𝑞/2)
𝑁

· P𝑟−1,𝜉 (𝜖,𝑟 ),𝜋 (−2(𝑚 − 𝜇) (𝑙 −𝑞/2)/𝑁 )}𝑙 ∈[𝑞 ] . We substi-

tute them for {𝜔𝑚 (𝑙−𝑞/2)
𝑁

}𝑙 ∈[𝑞 ] in (3), which gives the following

estimation of 𝑎𝑚 for𝑚 ∈ 𝑅𝜇,𝑀 , where 𝑘 ∈ [𝑝], 𝑙 ∈ [𝑞], and 𝑗 ∈ [𝑟 ]:

𝜔𝑚
2𝑝

∑︁
𝑘,𝑙

𝑎𝑞𝑘+𝑙 𝜔
𝜇 (𝑙−𝑞/2)
𝑁

P𝑟−1,𝜉 (𝜖,𝑟 ),𝜋 (−2(𝑚 − 𝜇) (𝑙 − 𝑞/2)/𝑁 ) 𝜔𝑚𝑘
𝑝

= 𝜔𝑚
2𝑝

∑︁
𝑘,𝑙

𝑎𝑞𝑘+𝑙 𝜔
𝜇 (𝑙−𝑞/2)
𝑁

∑︁
𝑗

𝑤𝜖,𝑟, 𝑗 (−2(𝑚 − 𝜇) (𝑙 − 𝑞/2)/𝑁 ) 𝑗𝜔𝑚𝑘
𝑝

= 𝜔𝑚
2𝑝

∑︁
𝑗

∑︁
𝑘,𝑙

𝑎𝑞𝑘+𝑙 𝜔
𝜇 (𝑙−𝑞/2)
𝑁

𝑤𝜖,𝑟, 𝑗 ((𝑚 − 𝜇)/𝑝) 𝑗 (1 − 2𝑙/𝑞) 𝑗𝜔𝑚𝑘
𝑝 .

(5)

3.3 Efficient Summations
We have found that three main summation steps (each being over

𝑗, 𝑘 , and 𝑙) take place when computing the partial Fourier coeffi-

cients. Note that in (5), the innermost summation

∑
𝑗 is moved

to the outermost position, and the term −2(𝑚 − 𝜇) (𝑙 − 𝑞/2)/𝑁 is

factorized into two independent terms, (𝑚 − 𝜇)/𝑝 and 1 − 2𝑙/𝑞.
Interchanging the order of summations and factorizing the term

result in a significant computational benefit; we elucidate what

operator we should utilize for each summation and how we can

save the arithmetic costs from it. As we will see, the innermost sum

over 𝑙 corresponds to a matrix multiplication, the second sum over

𝑘 can be viewed as a set of DFTs, and the outermost sum over 𝑗

is an inner product. For the first sum, let 𝐴 = (𝑎𝑘,𝑙 ) = 𝑎𝑞𝑘+𝑙 and

𝐵 = (𝑏𝑙, 𝑗 ) = 𝜔
𝜇 (𝑙−𝑞/2)
𝑁

𝑤𝜖,𝑟, 𝑗 (1 − 2𝑙/𝑞) 𝑗 , so that (5) can be written

as follows:

𝜔𝑚
2𝑝

∑︁
𝑗 ∈[𝑟 ]
((𝑚 − 𝜇)/𝑝) 𝑗

∑︁
𝑘∈[𝑝 ]

𝜔𝑚𝑘
𝑝

∑︁
𝑙 ∈[𝑞 ]

𝑎𝑘,𝑙𝑏𝑙, 𝑗 .
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Algorithm 1: Configuration phase of PFT

input : Input size 𝑁 , output descriptors𝑀 and 𝜇, divisor 𝑝 ,

and tolerance 𝜖

output :Matrix 𝐵, divisor 𝑝 , and numbers of rows and

columns, 𝑞 and 𝑟

1 𝑞 ← 𝑁 /𝑝
2 𝑟 ← min{𝑟 ∈ N : 𝜉 (𝜖, 𝑟 ) ≥ 𝑀/𝑝} // 𝜉 (𝜖, 𝑟 ): precomputed

3 𝐵 [𝑙, 𝑗] ← 𝜔
𝜇 (𝑙−𝑞/2)
𝑁

𝑤𝜖,𝑟, 𝑗 (1 − 2𝑙/𝑞) 𝑗 for (𝑙, 𝑗) ∈ [𝑞] × [𝑟 ]
// 𝑤𝜖,𝑟, 𝑗: precomputed

Algorithm 2: Computation phase of PFT

input :Vector 𝒂 of size 𝑁 , output descriptors𝑀 and 𝜇, and

configuration results 𝐵, 𝑝, 𝑞, 𝑟

output :Vector E(𝒂) of estimated Fourier coefficients of 𝒂
for [𝜇 −𝑀, 𝜇 +𝑀]

1 𝐴[𝑘, 𝑙] ← 𝑎𝑞𝑘+𝑙 for 𝑘 ∈ [𝑝] and 𝑙 ∈ [𝑞]
2 𝐶 ← 𝐴 × 𝐵
3 for 𝑗 ∈ [𝑟 ] do
4 𝐶 [·, 𝑗] ← FFT(𝐶 [·, 𝑗]) // FFT of 𝑗𝑡ℎ column of 𝐶

5 end
6 for 𝑚 ∈ [𝜇 −𝑀, 𝜇 +𝑀] do
7 E(𝒂) [𝑚] ← 𝜔𝑚

2𝑝

∑𝑟−1
𝑗=0 ((𝑚 − 𝜇)/𝑝) 𝑗 ·𝐶 [𝑚%𝑝, 𝑗]

8 end

Note that the matrix 𝐵 is data-independent (not dependent on 𝒂),
and thus can be precomputed. Indeed, we have already seen that

{𝑤𝜖,𝑟, 𝑗 } 𝑗 ∈[𝑟 ] can be precomputed. The other factors 𝜔
𝜇 (𝑙−𝑞/2)
𝑁

and

(1 − 2𝑙/𝑞) 𝑗 composing the elements of 𝐵 can also be precomputed

if (𝑁,𝑀, 𝜇, 𝑝, 𝜖) is known in advance. Thus, as long as the setting

(𝑁,𝑀, 𝜇, 𝑝, 𝜖) is unchanged, we can reuse the matrix 𝐵 for any input

data 𝒂 once the configuration phase of PFT is completed (Algorithm

1). We shall denote the multiplication 𝐴 × 𝐵 as 𝐶 = (𝑐𝑘,𝑗 ):

𝜔𝑚
2𝑝

∑︁
𝑗 ∈[𝑟 ]
((𝑚 − 𝜇)/𝑝) 𝑗

∑︁
𝑘∈[𝑝 ]

𝑐𝑘,𝑗 𝜔
𝑚𝑘
𝑝 . (6)

For each 𝑗 ∈ [𝑟 ], the summation 𝑐𝑚,𝑗 =
∑
𝑘∈[𝑝 ] 𝑐𝑘,𝑗 𝜔

𝑚𝑘
𝑝 is a DFT

of size 𝑝 . We perform FFT 𝑟 times for this computation, which yields

the following estimation of 𝑎𝑚 for𝑚 ∈ 𝑅𝜇,𝑀 :

𝜔𝑚
2𝑝

∑︁
𝑗 ∈[𝑟 ]
((𝑚 − 𝜇)/𝑝) 𝑗 𝑐𝑚,𝑗 . (7)

Note that 𝑐𝑚,𝑗 is a periodic function of period 𝑝 with respect to𝑚,

so we use the coefficient at𝑚 modulo 𝑝 if𝑚 < 0 or𝑚 ≥ 𝑝 . Thus, the

𝑚𝑡ℎ
Fourier coefficient of 𝒂 can be estimated by the inner product of

((𝑚−𝜇)/𝑝) 𝑗 and 𝑐𝑚,𝑗 with respect to 𝑗 , followed by a multiplication

with the extra twiddle factor𝜔𝑚
2𝑝

(we also precompute ((𝑚−𝜇)/𝑝) 𝑗
and 𝜔𝑚

2𝑝
). The full computation is outlined in Algorithm 2. By these

summation techniques, the arithmetic complexity is reduced to

𝑂 (𝑁 +𝑀 log𝑀) from naïve 𝑂 (𝑀𝑁 ), as described in Section 3.4.

3.4 Theoretical Analysis
We present theoretical analysis on the time complexity of PFT and

its approximation bound.

3.4.1 Time Complexity. We analyze the time complexity of PFT.

Theorem 3 shows that the time cost 𝑇 (𝑁,𝑀, 𝜖) of PFT is 𝑂 ((𝑁 +
𝑀 log𝑀) log(1/𝜖)), where 𝑁 and𝑀 are input and output size de-

scriptors, respectively, and 𝜖 is a given tolerance. For finding a small

number𝑀 of coefficients, where𝑀 ≪ 𝑁 , PFT is much faster than

a typical FFT which takes 𝑂 (𝑁 log𝑁 ). Note that the theorem pre-

sumes that all prime factors of 𝑁 have a fixed upper bound. Yet, in

practice, this necessity is not a big concern because one can readily

control the input size with basic techniques such as zero-padding

or re-sampling. Moreover, we empirically find that even if 𝑁 has a

large prime factor, PFT still shows a promising performance (see

Section 4.2). We first derive an asymptotic equation between 𝑟 and

𝜖 in Lemma 2, and use it for the proof of Theorem 3.

Lemma 2. Let 𝑐1 ≤ 𝜉 (𝜖, 𝑟 ) ≤ 𝑐2 for some constants 𝑐1, 𝑐2 > 0.
Then we have the asymptotic equation, 𝑟 = 𝑂 (log(1/𝜖)). □

Proof. See Supplement A.2. □

In Theorem 3, note that a positive integer is called 𝑏-smooth
if none of its prime factors is greater than 𝑏. For example, the

2-smooth integers are equivalent to the powers of 2.

Theorem 3. Fix an integer 𝑏 ≥ 2. If 𝑁 is 𝑏-smooth, then the
time complexity 𝑇 (𝑁,𝑀, 𝜖) of PFT has an asymptotic upper bound
𝑂 ((𝑁 +𝑀 log𝑀) log(1/𝜖)). □

Proof. We first claim that the following statement holds: let
𝑏 ≥ 2; if 𝑁 is 𝑏-smooth and 𝑀 ≤ 𝑁 is a positive integer, then there
exists a positive divisor 𝑝 of 𝑁 satisfying𝑀/

√
𝑏 ≤ 𝑝 <

√
𝑏𝑀 . Indeed,

suppose that none of 𝑁 ’s divisors belongs to [𝑀/
√
𝑏,
√
𝑏𝑀). Let

1 = 𝑝1 < 𝑝2 < · · · < 𝑝𝑑 = 𝑁 be the enumeration of all positive

divisors of 𝑁 in increasing order. It is clear that 𝑝1 <
√
𝑏𝑀 and

𝑀/
√
𝑏 < 𝑝𝑑 since 𝑏 ≥ 2 and 1 ≤ 𝑀 ≤ 𝑁 . Then, there exists an

𝑖 ∈ {1, 2, · · · , 𝑑 − 1} so that 𝑝𝑖 < 𝑀/
√
𝑏 and 𝑝𝑖+1 ≥

√
𝑏𝑀 . Since 𝑁

is 𝑏-smooth and 𝑝𝑖 < 𝑁 , at least one of 2𝑝𝑖 , 3𝑝𝑖 , · · · , 𝑏𝑝𝑖 must be

a divisor of 𝑁 . However, this is a contradiction because we have

𝑝𝑖+1/𝑝𝑖 > (
√
𝑏𝑀) (𝑀/

√
𝑏)−1 = 𝑏, so none of 2𝑝𝑖 , 3𝑝𝑖 , · · · , 𝑏𝑝𝑖 can

be a divisor of 𝑁 , which completes the proof.

Exploiting the above property, we manage to reduce the time

complexity of PFT to a functional form dependent of only 𝑁 ,𝑀 and

𝜖 . We follow the convention in counting FFT operations, assuming

that all data-independent elements such as configuration results

𝐵, 𝑝, 𝑞, 𝑟 and twiddle factors are precomputed, and thus not included

in the run-time cost. We begin with the construction of the matrix

𝐴. For this, we merely interpret 𝒂 as an array representation for

𝐴 of size 𝑝 × 𝑞 = 𝑁 (line 1 in Algorithm 2). Also, recall that the

matrix 𝐵 can be precomputed as described in Section 3.3. For the

two matrices 𝐴 of size 𝑝 × 𝑞 and 𝐵 of size 𝑞 × 𝑟 , standard matrix

multiplication algorithm has running time of 𝑂 (𝑝𝑞𝑟 ) = 𝑂 (𝑟 · 𝑁 )
(line 2 in Algorithm 2). Next, the expression (6) contains 𝑟 DFTs of

size 𝑝 , namely 𝑐𝑚,𝑗 =
∑
𝑘∈[𝑝 ] 𝑐𝑘,𝑗 · 𝜔𝑚𝑘

𝑝 for each 𝑗 ∈ [𝑟 ]. We use

FFT 𝑟 times for the computation, then it is easy to see that the time

cost is given by 𝑂 (𝑟 · 𝑝 log𝑝) (lines 3-5 in Algorithm 2). Finally,

there are 2𝑀 + 1 coefficients to be calculated in (7), each requiring
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𝑂 (𝑟 ) operations, giving an upper bound 𝑂 (𝑟 ·𝑀) for the running
time (lines 6-8 in Algorithm 2). Combining the three upper bounds

𝑂 (𝑟 · 𝑁 ),𝑂 (𝑟 · 𝑝 log𝑝), and𝑂 (𝑟 ·𝑀), we formally express the time

complexity 𝑇 (𝑁,𝑀, 𝜖) of PFT as follows:

𝑇 (𝑁,𝑀, 𝜖) = 𝑂 (𝑟 · (𝑁 + 𝑝 log𝑝 +𝑀)) .
Note that 𝑟 is dependent of 𝜖 and 𝑀/𝑝 by its definition (line 2

in Algorithm 1). By the preceding argument, we can always find

a divisor 𝑝 of 𝑁 such that 𝑀/
√
𝑏 ≤ 𝑝 <

√
𝑏𝑀 , implying that

𝑀/𝑝 is tightly bounded. Then, it follows that 𝑝 = Θ(𝑀) and that

𝑟 = 𝑂 (log(1/𝜖)) by Lemma 2. This leads to the following asymptotic

upper bound with respect to 𝑁 ,𝑀 and 𝜖 :

𝑇 (𝑁,𝑀, 𝜖) = 𝑂 ((𝑁 +𝑀 log𝑀) log(1/𝜖)),
hence the proof. □

3.4.2 Approximation Bound. We now give a theoretical approxima-

tion bound of the estimation via the polynomial P. We denote the

estimated Fourier coefficient of 𝒂 as E(𝒂). Theorem 4 states that the

approximation bound over the target range is data-dependent of

the total weight ∥𝒂∥1 of the original vector and the given tolerance

𝜖 , where ∥ · ∥1 denotes the ℓ1 norm. Recall that 𝜖 controls the num-

ber 𝑟 of approximating terms (Lemma 2) and thus the error bound

∥𝒂 − E(𝒂)∥𝑅𝜇,𝑀
. This indicates that the Fourier coefficients can

be evaluated to arbitrary numerical precision with PFT by setting

different 𝜖 as necessary. Note that the trade-off between accuracy

and running time is presented in Theorem 3.

Theorem 4. Given a tolerance 𝜖 > 0, the following inequality
holds for PFT:

∥𝒂 − E(𝒂)∥𝑅𝜇,𝑀
≤ ∥𝒂∥1 · 𝜖. □

Proof. See Supplement A.3. □

4 EXPERIMENTS
Through experiments, the following questions should be answered:

Q1 Run-time cost (Section 4.2). How quickly does PFT compute

a part of Fourier coefficients compared to other competitors

without sacrificing accuracy?

Q2 Effect of hyperparameter 𝑝 (Section 4.3). How do the dif-

ferent choices of divisor 𝑝 of input size 𝑁 affect the overall

performance of PFT?

Q3 Effect of different precision (Section 4.4). How do the dif-

ferent precision settings affect the running time of PFT?

Q4 Anomaly detection (Section 4.5). How well does PFT work

for a practical application using FFT (anomaly detection)?What

are the discoveries of analyzing real world data with PFT?

4.1 Experimental Setup
Machine.Amachine equippedwith Intel Core i7-6700HQ@2.60GHz

and 8GB of RAM is used.

Datasets.We use both synthetic and real-world datasets summa-

rized in Table 2. For 𝑛 = 12, · · · , 22, S𝑛 is a set of 1000 vectors of

length 2
𝑛
whose elements are random real numbers between 0 and

1. Urban Sound contains 4347 sound recordings in urban environ-

ment, and Air Condition is composed of 29 time-series vectors of

air condition information (e.g., temperature and humidity). Stock

Table 2: Summary of datasets.

Dataset Type # of Time Series Length

{S𝑛}22𝑛=12 Synthetic 1000 2
𝑛

Urban Sound
1

Real-world 4347 32000

Air Condition
2

Real-world 29 19735

Stock
3

Real-world 4 1012

is a new public data we release; it consists of the daily historical

stock prices of FANG, the four American technology companies

Facebook, Amazon, Netflix, and Google. We collected closing prices

adjusted for stock splits, from 2017-01-03 to 2021-01-08.

Competitors.We compare PFT with two state-of-the-art FFT al-

gorithms FFTW and MKL, as well as Pruned FFTW. All of them are

implemented in C++.

(1) FFTW: FFTW
4
[7] is one of the fastest public implementation

for FFT, offering a hardware-specific optimization. We use the

optimized version of FFTW 3.3.5, and do not include the pre-

processing for the optimization as the run-time cost.

(2) MKL: Intel Math Kernel Library
5
(MKL) is a library of optimized

math routines including FFT, and often shows a better running

time result than the FFTW. All the experiments are conducted

with an Intel processor for the best performance.

(3) Pruned FFT: Pruned FFT6 [1, 16, 19, 29, 31] is a pruned version
of FFTWdesigned for fast computation of a subset of the outputs.

The algorithm uses the optimized FFTW as a subroutine.

(4) PFT (proposed): we useMKL BLAS routines for thematrixmul-

tiplication, MKL DFTI functions for the batch FFT computation,

and Intel Integrated Performance Primitives (IPP) library for the

post-processing steps such as inner product and element-wise

multiplication.

We have also conducted experiments for Goertzel algorithm

[3, 8]. However, we opt not to include the results in the paper

because the method shows an extremely poor performance, with

up to 10
5× slower running time compared to other competitors.

Measure. In all experiments, we use single-precision floating-point

format, and the parameters 𝑝 and 𝜖 are chosen so that the relative

ℓ2 error is strictly less than 10
−6
, which ensures that the overall

estimated coefficients have at least 6 significant figures. Explicitly,

Relative ℓ2 Error =

√︄∑
𝑚∈R |𝑎𝑚 − E(𝑎)𝑚 |2∑

𝑚∈R |𝑎𝑚 |2
< 10

−6,

where 𝒂 is the actual coefficient, E(𝒂) is the estimation of 𝒂, and R
is the target range. Section 4.4 is an exception, where we investigate

different settings, varying the precision to 10
−4

or 10
−2
.

4.2 Run-Time Cost
We evaluate the running time of PFT on synthetic and real-world

datasets, varying input and output sizes.

1
https://urbansounddataset.weebly.com/urbansound8k.html

2
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction

3
https://github.com/snudatalab/PFT

4
http://www.fftw.org/index.html

5
https://software.intel.com/mkl

6
http://www.fftw.org/pruned.html
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4.2.1 Run-Time Cost on Synthetic Data. We generate 1000 random

synthetic vectors of size 2
𝑛
and evaluate the average running time

of PFT over 100 runs for all the vectors with different settings.

Running time vs. input size.We fix the target range to 𝑅
0,29

and evaluate the average running time of PFT vs. input sizes 𝑁 : 2
12
,

2
13
, · · · , 222. Figure 1(a) shows how the four competitive algorithms

scale with varying input size, wherein PFT outperforms the others

if the output size is sufficiently smaller (< 10%) than the input

size. Consequently, PFT achieves up to 19× speedup compared to

its competitors. Due to the overhead of the 𝑂 (𝑁 ) pre- and 𝑂 (𝑀)
post-processing steps, PFT runs slower than FFT when 𝑀 is close

to 𝑁 so the time complexity tends to 𝑂 (𝑁 + 𝑁 log𝑁 ) in the case.

Running time vs. output size.We fix the input size to 𝑁 = 2
22

and evaluate the average running time of PFT vs. target ranges

𝑅
0,29 , 𝑅0,210 , · · · , 𝑅0,219 . The result is illustrated as a running time

vs. output size plot (recall that |𝑅0,𝑀 | ≃ 2𝑀) in Figure 1(b). Note

that PFT significantly extends the range of output sizes for which

partial Fourier transform becomes practical. On the other hand, the

running times of FFTW and MKL do not benefit from the informa-

tion of output size. We also observe that Pruned FFT shows only a

modest improvement compared to the full FFTs.

4.2.2 Run-Time Cost on Real-World Data. When it comes to real-

world data, it is not generally the case that the size of an input vector

is a power of 2. Notably, PFT still shows a promising performance

regardless of the fact that the input size is not a power of 2 or even

it has a large prime factor: a strong indication that our proposed

technique is robust for many different applications in real-world.

Urban Sound. Urban Sound dataset is composed of 4347 sound

recordings of length 𝑁 = 32000 = 2
8 × 53. We evaluate the running

time of PFT vs. output size ranging from 100 to 6400. Figure 2(a)

shows the result, where each point is the average over 100 runs for

all 4347 instances.We observe that PFT outperforms the competitors

if the output size is small enough compared to the input size.

Air Condition. Air Condition dataset contains 29 time-series

vectors of 𝑁 = 19735 = 5 × 3947. Note that 𝑁 has only two non-

trivial divisors, namely 5 and 3947, forcing one to choose 𝑝 = 3947

in any practical settings; if 𝑝 = 5, the ratio𝑀/𝑝 turns out to be too
large, which results in a poor performance (see Section 4.3 for more

discussion of the optimal choice of 𝑝). The running time of PFT vs.

output size ranging from 125 to 16000 is evaluated in Figure 2(b),

where each point is the average over 1000 runs for all 29 instances

(Pruned FFT is not included since it consistently runs slower than all

the other competitors). It is noteworthy that PFT still outperforms

its competitors even in such pathological examples, implying the

robustness of our algorithm for various real-world situations.

4.3 Effect of Hyperparameter 𝑝
To investigate the effect of different choices of 𝑝 , we fix 𝑁 = 2

22
and

vary the ratio𝑀/𝑝 from 1/32 to 4 for target ranges 𝑅
0,29 , 𝑅0,210 , · · · ,

𝑅
0,218 . Table 3 shows the results, where the bold highlights the best

choice of𝑀/𝑝 for each𝑀 , and the missing entries are due to worse

performance than FFT. One crucial observation is as follows: with

the increase of output size, the best choice of𝑀/𝑝 also increases or,

equivalently, the optimal value of 𝑝 tends to be stable. Intuitively,

this is the consequence of “balancing” the three summation steps

(Section 3.3): when𝑀 ≪ 𝑁 , the most computationally expensive

Ο PFT (proposed) □ Pruned FFT Ｘ FFTW ＋ MKL

Ο Ο
Ο

Ο

Ο

Ο

Ο
□ □ □

□
□

□
Ｘ Ｘ Ｘ Ｘ Ｘ Ｘ Ｘ
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(b) Air Condition (𝑁 = 19735)

Figure 2: Running time vs. output size for (a) Urban Sound
and (b) Air Condition. We set the precision of all the methods
the same, by making the relative error strictly less than 10

−6.
PFT outperforms the competitors regardless of the fact that
the input size is not a power of 2 (32000 = 2

8 × 53) or even it
has a large prime factor (19735 = 5 × 3947). Pruned FFT is not
included in (b) since it consistently runs slower than FFTW.

Table 3: Average running time (ms) of PFT for 𝑁 = 2
22 with

different settings of𝑀 and𝑀/𝑝. With the increase of output
size, the best choice of 𝑀/𝑝 also increases or, equivalently,
the optimal value of 𝑝 tends to remain stable.

𝑀

𝑀/𝑝
1/32 1/8 1/2 1 2 4

2
9 1.273 2.674 2.627 2.677 4.005 4.090

2
10 1.394 1.608 3.738 2.685 2.723 4.295

2
11

1.634 1.332 2.717 3.805 2.731 2.986

2
12

2.303 1.491 1.678 2.808 3.533 2.983

2
13

5.659 1.860 1.526 1.687 2.878 4.108

2
14

14.121 3.020 1.881 1.692 1.949 3.275

2
15

- 7.711 2.707 2.164 1.940 2.365

2
16

- - 5.740 3.530 2.821 2.929

2
17

- - 14.715 7.749 5.556 5.411
2
18

- - - - 12.534 11.924

operation is the matrix multiplication with 𝑂 (𝑟𝑁 ) time cost, and

thus,𝑀/𝑝 should be small so that the 𝑟 decreases, despite a sacrifice

in the batch FFT step requiring 𝑂 (𝑟𝑝 log 𝑝) operations. As the 𝑀
becomes larger, however, more concern is needed regarding the

batch FFT and post-processing steps, so the parameter 𝑝 should not

change rapidly. This implies the possibility that the optimal value of

𝑝 can be algorithmically auto-selected given a setting (𝑁,𝑀, 𝜇, 𝜖),
which we leave as a future work.

4.4 Effect of Different Precision
Recall that PFT provides an option to set an arbitrary numerical

precision (Theorem 4). In Section 4.2, we fixed the precision of all

the methods to < 10
−6
, where PFT showed the fastest running time.

The next questions are as follows: is it possible to reduce the run-
ning time of PFT even further if we relax the precision requirement?
What is the trade-off between accuracy and running time? To investi-
gate them, we fix 𝑁 = 2

22
and change the precision goal from 10

−6
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Table 4: Average running time (ms) of PFT for 𝑁 = 2
22 with

different precision settings. Note that the running time re-
duces by up to 17% or 27%, when relaxing the precision re-
quirements. This trade-off is useful especially when the fast
evaluation is of utmost importance.

𝑀

Precision

10
−6

10
−4

10
−2

2
9

1.273 1.249 (.98) 1.238 (.97)

2
10

1.295 1.278 (.99) 1.244 (.96)

2
11

1.332 1.293 (.97) 1.251 (.94)

2
12

1.491 1.329 (.89) 1.277 (.86)

2
13

1.526 1.400 (.92) 1.343 (.88)

2
14

1.692 1.607 (.95) 1.512 (.89)

2
15

1.940 1.872 (.96) 1.740 (.90)

2
16

2.821 2.469 (.88) 2.297 (.81)

2
17

5.411 4.590 (.85) 4.058 (.75)

2
18

11.924 9.927 (.83) 8.733 (.73)

to 10
−4

or 10
−2

for target ranges 𝑅
0,29 , · · · , 𝑅0,218 . Table 4 shows

the results, where the parenthesized number is the ratio of running

times of each setting to 10
−6
. Note that they are reduced by up

to 17% or 27% when the precision goal is set to 10
−4

or 10
−2
, re-

spectively. This observation indicates that one may readily benefit

from the trade-off, especially when the fast evaluation is of utmost

importance albeit with a slight sacrifice in accuracy.

4.5 Anomaly Detection
We present application of PFT for anomaly detection. Here is one

simple but fundamental principle: replace the “do FFT and discard
unused coefficients” procedure with “just do PFT.” Considering the

anomaly detection method proposed in [23], where one first per-

forms FFT and then inverse FFT with only a few low-frequency

coefficients to obtain an estimated fitted curve, we can directly

apply the principle to the method. We first verify the accuracy of

anomaly detection after replacing the standard FFT with PFT, and

show the efficacy of PFT by presenting interpretations of anomalous

points in time-series data.

4.5.1 Accuracy. To validate the accuracy of anomaly detection

with PFT, we use time-series vectors with various patterns from

Air Condition dataset, and set the target range as 𝑅0,125 (≃ 250

low-frequency coefficients). Note that, in this setting, PFT results in

∼ 8× speedup compared to the conventional FFT (see Figure 2(b)).

We then construct an estimated fitted curve with the coefficients,

and compute the absolute difference between the original and fitted

curves to obtain the top-k largest points in magnitude. The top-k

anomalous points detected from the time series are presented in

Figure 3. As a result, all the anomalies found by PFT exactly coincide

with those found by FFT. Therefore, replacing FFT with PFT allows

both fast and accurate anomaly detection on time series, regardless

of different patterns of the data.

4.5.2 Discovery. We have shown that PFT successfully detects the

anomalies or local outliers in a given time-series vector. This in

turn raises intriguing questions: what is the interpretation of the
anomalies, and how is an anomalous point related to a real-world

Ο
ΟΟ

ΟΟ ΟΟ

Ο

Ο

Ο

Ο

Ο
Ο

Ο

Ο

Ο

Ο

ΟΟ

Ο

0 2500 5000 7500 10000 12500 15000 17500

16

18

20

22

24

Time index

T
em
pe
ra
tu
re

(°
C
)

(a) Pattern 1: relatively smooth time series

Ο

ΟΟ

Ο

Ο

Ο
Ο Ο

Ο

Ο

ΟΟ
Ο

Ο

Ο

Ο

Ο
Ο

Ο

Ο
Ο

Ο

Ο

Ο

Ο

Ο

Ο
Ο

Ο

Ο

0 2500 5000 7500 10000 12500 15000 17500

30

35

40

45

50

55

Time index

H
um
id
ity

(%
)

(b) Pattern 2: moderately oscillatory time series
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(c) Pattern 3: highly oscillatory time series

Figure 3: Top-k anomaly detection using PFT on time-series
vectors with various patterns. Note that all the anomalous
points (red circles) found by PFT exactly coincide with those
found by standard FFT, and that PFT results in ∼ 8× speedup
compared to FFT, regardless of the different patterns of data.
This demonstrates the accuracy and robustness of PFT on
real-world anomaly detection.

event? To answer these questions, we present a set of discoveries

of analyzing historical stock price data by PFT. With Stock dataset

containing four time-series vectors of stock prices for Facebook,

Amazon, Netflix, and Google, we conduct top-5 anomaly detection

tasks using PFT, and interpret each anomalous point by matching it

to a real-world incident that occurred in the corresponding period.

Figure 4 shows the anomalies found by PFT (they are also the

same as those by FFT). We observe that most of the anomalies are

distributed in the period after the outbreak of COVID-19, mainly

because of the increasing uncertainty. There also exist particular

factors by which a certain company is more affected. For example,

the US-China trade war had the greatest impact on Amazon among

the four companies, and the US election had affected Facebook and

Google the more. These observations offer an interpretation of the

anomaly detection, validating the efficacy of our proposed method.

5 CONCLUSIONS
We propose PFT (Partial Fourier Transform), an efficient algorithm

for computing a part of Fourier coefficients. PFT approximates some

of twiddle factors with relatively small oscillations using polyno-

mials, reducing the computational complexity of DFT due to the

mixture of many twiddle factors. Experimental results show that

PFT outperforms the state-of-the-art FFTs as well as pruned FFT,

with an order of magnitude of speedup without accuracy loss, sig-

nificantly extending the range of applications where partial Fourier
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Figure 4: Top-5 anomaly detection using PFT on time series for (a) Facebook, (b) Amazon, (c) Netflix, and (d) Google. We find
that each anomalous point (red circle) is closely related to a real-world event during the corresponding period and thus easily
interpretable. These results show the efficacy of our proposed method on anomaly detection.

transform becomes practical. Moreover, PFT provides an option

of trading off running time and error, which is useful especially

when the fast evaluation is very important. We also demonstrate

the accuracy and efficacy of PFT on real-world anomaly detection,

presenting interpretations of anomalies in stock price data. Future

works include further optimizing the implementation of PFT.
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A SUPPLEMENT
A.1 Proof of Lemma 1

Proof. Let 𝑄 = argmin𝑃 ∈𝑃𝛼 ∥𝑃 (𝑥) − 𝑒
𝑢𝑖𝑥 ∥ |𝑥−𝜇 | ≤ |𝜉 | . We first

observe the following equation:

𝑄 = argmin

𝑃 ∈𝑃𝛼
∥𝑃 (𝑥) − 𝑒𝑢𝑖𝑥 ∥ |𝑥−𝜇 | ≤ |𝜉 |

= argmin

𝑃 ∈𝑃𝛼
∥𝑃 (𝑥 + 𝜇) − 𝑒𝑢𝑖 (𝑥+𝜇) ∥ |𝑥 | ≤ |𝜉 |

= argmin

𝑃 ∈𝑃𝛼
∥𝑒−𝑢𝑖𝜇 · 𝑃 (𝑥 + 𝜇) − 𝑒𝑢𝑖𝑥 ∥ |𝑥 | ≤ |𝜉 |,

where the third equality holds since |𝑒−𝑢𝑖𝜇 | = 1. Recall that the

polynomial P𝛼,𝜉,𝑢 is defined by argmin𝑃 ∈𝑃𝛼 ∥𝑃 (𝑥) − 𝑒
𝑢𝑖𝑥 ∥ |𝑥 | ≤ |𝜉 | .

If𝑄 (𝑥) ∈ 𝑃𝛼 , it is clear that 𝑒−𝑢𝑖𝜇 ·𝑄 (𝑥+𝜇) ∈ 𝑃𝛼 because translation

and non-zero scalar multiplication on a polynomial do not change

its degree. Therefore, by the uniqueness of the best approximation

[30], we have

𝑒−𝑢𝑖𝜇 ·𝑄 (𝑥 + 𝜇) = P𝛼,𝜉,𝑢 (𝑥),

which yields 𝑄 (𝑥) = 𝑒𝑢𝑖𝜇 · P𝛼,𝜉,𝑢 (𝑥 − 𝜇), and hence the proof. □

A.2 Proof of Lemma 2
Proof. Let 𝜉 (𝜖, 𝑟 ) = 𝑐 for a constant 𝑐 between 𝑐1 and 𝑐2, and

consider the best polynomial approximation to 𝑒𝑐𝜋𝑖𝑥 on |𝑥 | ≤ 1

(recall Definition 3.2). We shall make use of the Taylor series 𝑒𝑐𝜋𝑖𝑥 =∑
𝑛≥0 (𝑐𝜋𝑖𝑥)𝑛/𝑛!. Note that for a non-negative integer 𝑛, the 𝑛-th

power of 𝑥 can be written as follows:

𝑥𝑛 =
1

2
𝑛−1

(
𝑇𝑛 (𝑥) +

(
𝑛

1

)
𝑇𝑛−2 (𝑥) +

(
𝑛

2

)
𝑇𝑛−4 (𝑥) + · · ·

)
,

where 𝑇𝑛 (𝑥) is the Chebyshev polynomial [4] of degree 𝑛 (for even

𝑛, the coefficient of 𝑇0 (𝑥) is divided by 2). Then, we have

𝑒𝑐𝜋𝑖𝑥 =
∑︁
𝑛≥0

(𝑐𝜋𝑖𝑥)𝑛
𝑛!

=
∑︁
𝑛≥0

(𝑐𝜋𝑖)𝑛
𝑛!

1

2
𝑛−1

⌊𝑛/2⌋∑︁
𝑘=0

(
𝑛

𝑘

)
𝑇𝑛−2𝑘 (𝑥) .

Dropping the 𝑇𝑛−2𝑘 terms for 𝑛 − 2𝑘 ≥ 𝑟 gives a polynomial ap-

proximation of degree less than 𝑟 , with an error 𝜖 at most∑︁
𝑛−2𝑘≥𝑟

���� (𝑐𝜋𝑖)𝑛𝑛!

1

2
𝑛−1

(
𝑛

𝑘

)���� = ∑︁
𝑛−2𝑘≥𝑟

(𝑐𝜋)𝑛
𝑛!

1

2
𝑛−1

(
𝑛

𝑘

)
.

We may rewrite this as

𝜖 ≤
∑︁
𝑛≥𝑟

∑︁
𝑘≤⌊(𝑛−𝑟 )/2⌋

(𝑐𝜋)𝑛
𝑛!

1

2
𝑛−1

(
𝑛

𝑘

)
.

Since

∑𝑛
𝑘=0

(𝑛
𝑘

)
= 2

𝑛
, the summation has the following upper bound:

2

∑︁
𝑛≥𝑟

(𝑐𝜋)𝑛
𝑛!

.

Suppose that 𝑟 > 𝑐𝜋 , then we have

𝜖 ≤ 2

∑︁
𝑛≥𝑟

(𝑐𝜋)𝑛
𝑛!

≤ 2

(
(𝑐𝜋)𝑟
𝑟 !
+ (𝑐𝜋)

𝑟+1

𝑟 ! · 𝑟 + (𝑐𝜋)
𝑟+2

𝑟 ! · 𝑟2
+ · · ·

)
= 2

(𝑐𝜋)𝑟
𝑟 !

1

1 − (𝑐𝜋/𝑟 )

≤ 𝑐 ′
(𝑐𝜋)𝑟
𝑟 !

,

where 𝑐 ′ is a constant. Note that the similar argument holds for

all 𝑐1 ≤ 𝑐 ≤ 𝑐2 whenever 𝑟 > 𝑐2𝜋 . This implies that there exists

a constant 𝐶 > 0 satisfying 𝜖 ≤ 𝐶/2𝑟 for all sufficiently large 𝑟 . It

follows that 2
𝑟 ≤ 𝐶/𝜖 , and thus

𝑟 = 𝑂 (log(1/𝜖)),
which completes the proof. □

A.3 Proof of Theorem 4
Proof. Let 𝑣 = 𝑙 − 𝑞/2 and P = P𝑟−1,𝜉 (𝜖,𝑟 ),𝜋 . By the estimation

in (5), the following holds:

∥𝒂 − E(𝒂)∥𝑅𝜇,𝑀

= ∥
∑︁
𝑘,𝑙

𝑎𝑞𝑘+𝑙
(
𝜔𝑣𝑚
𝑁 − 𝜔𝑣𝜇

𝑁
P(−2𝑣 (𝑚 − 𝜇)/𝑁 )

)
𝜔𝑚𝑘
𝑝 𝜔𝑚

2𝑝 ∥𝑚∈𝑅𝜇,𝑀

≤
∑︁
𝑘,𝑙

∥𝑎𝑞𝑘+𝑙
(
𝜔𝑣𝑚
𝑁 − 𝜔𝑣𝜇

𝑁
P(−2𝑣 (𝑚 − 𝜇)/𝑁 )

)
𝜔𝑚𝑘
𝑝 𝜔𝑚

2𝑝 ∥𝑚∈𝑅𝜇,𝑀

=
∑︁
𝑘,𝑙

|𝑎𝑞𝑘+𝑙 | · ∥𝜔
𝑣 (𝑚−𝜇)
𝑁

− P(−2𝑣 (𝑚 − 𝜇)/𝑁 )∥𝑚∈𝑅𝜇,𝑀
,

since we have |𝜔𝑚𝑘
𝑝 | = |𝜔𝑚

2𝑝
| = |𝜔𝑣𝜇

𝑁
| = 1. If 𝑙 ranges from 0 to

𝑞−1, then |2𝑣/𝑁 | ≤ 2(𝑞/2)/𝑁 = 1/𝑝 , and thus,𝑀 |2𝑣/𝑁 | ≤ 𝑀/𝑝 ≤
𝜉 (𝜖, 𝑟 ). We extend the domain of the function𝜔

𝑣 (𝑚−𝜇)
𝑁

−P(−2𝑣 (𝑚−
𝜇)/𝑁 ) from𝑚 ∈ 𝑅𝜇,𝑀 = [𝜇 −𝑀, 𝜇 +𝑀] ∩ Z to 𝑥 ∈ [𝜇 −𝑀, 𝜇 +𝑀]
(note that extending domain never decreases the uniform norm),

and replace −2𝑣 (𝑥 − 𝜇)/𝑁 with 𝑥 ′, from which it follows that

∥𝒂 − E(𝒂)∥𝑅𝜇,𝑀

≤
∑︁
𝑘,𝑙

|𝑎𝑞𝑘+𝑙 | · ∥𝑒−2𝜋𝑖𝑣 (𝑥−𝜇)/𝑁 − P(−2𝑣 (𝑥 − 𝜇)/𝑁 )∥ |𝑥−𝜇 | ≤𝑀

=
∑︁
𝑘,𝑙

|𝑎𝑞𝑘+𝑙 | · ∥𝑒𝜋𝑖𝑥
′
− P(𝑥 ′)∥ |𝑥 ′ | ≤𝑀 |2𝑣/𝑁 |

≤
∑︁
𝑘,𝑙

|𝑎𝑞𝑘+𝑙 | · ∥𝑒𝜋𝑖𝑥
′
− P(𝑥 ′)∥ |𝑥 ′ | ≤𝜉 (𝜖,𝑟 )

≤
∑︁
𝑘,𝑙

|𝑎𝑞𝑘+𝑙 | · 𝜖

= ∥𝒂∥1 · 𝜖,
where the second inequality holds since 𝑀 |2𝑣/𝑁 | ≤ 𝜉 (𝜖, 𝑟 ). This
completes the proof. □
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