

Fast and Accurate Partial Fourier Transform for Time Series Data

Yong-chan Park, Jun-Gi Jang, and U Kang

Computer Science & Engineering Seoul National University

Introduction

- Existing Works
- Proposed Method
- Experiments
- Conclusion

Fourier Transform

- Fundamental tool for numerous applications
 - Signal / image processing
 - Data compression (e.g., mp3 and jpg)
 - Medical imaging (e.g., MRI)
 - Anomaly detection

https://www.gettyimages.com https://www.pinclipart.com https://www.kissclipart.com https://commons.wikimedia.org

Fourier Transform

- Temporal or spatial domain \rightarrow Frequency domain

Spatial domain

Frequency domain

Fourier Transform

- Strong energy compaction or sparsity
 - Fourier coefficients are mostly small or equal to zero

Spatial domain

Frequency domain

- Fast Fourier Transform (FFT) is inefficient
 - FFT always computes *all* the coefficients

Most of the coefficients are just discarded!

- FFT computes even the unnecessary coefficients
 - Is it possible to efficiently compute only a few of them?

How can we do this directly?

Problem Definition

- Partial Fourier Transform
 - Given
 - Complex-valued vector *a* of size *N*
 - Non-negative integer $M \ll N$
 - Integer μ
 - Estimate
 - Fourier coefficients of a for $[\mu M, \mu + M]$

Outline

- Introduction
- Existing Works
- Proposed Method
- Experiments
- Conclusion

- Fast Fourier Transform (FFT) rapidly computes the full Fourier coefficients
 - FFT has been highly optimized over decades
 - Time complexity: $O(N \log N)$

- No option to efficiently compute only a few coefficients
- Unnecessary coefficients are just discarded

Goertzel Algorithm

- Goertzel algorithm is one of the first methods for computing partial Fourier coefficients
 - Time complexity: *O*(*MN*)

- Essentially the same as computing individual coefficients
- It is limited to rare scenarios where a very few number of coefficients are required

- Subband DFT decomposes the input into a set of subsequences, and removes some of them with small energy contribution
 - Time complexity: $O(N + M \log N)$

- Substantial issue of low accuracy
- No option to set an error bound

- FFT Pruning is a modification of the standard split-radix FFT
 - Almost optimized because it uses FFT as a subroutine
 - Time complexity: $O(N \log M)$

- The performance gains are rather modest in practice
- PFT (proposed) significantly outperforms Pruned FFT

Outline

- Introduction
- Existing Works
- Proposed Method
- Experiments
- Conclusion

PFT (Partial Fourier Transform)

- Efficiently computes a part of Fourier coefficients
- Time complexity: $O(N + M \log M)$ (state-of-the-art)
- Provides an option to set an arbitrary numerical precision
- Main ideas
 - Polynomial approximation
 - Base exponential function
 - Reordering operators

Polynomial Approximation

- PFT approximates a set of smooth twiddle factors by polynomials
 - Significantly reduces the computational cost due to the mixture of many twiddle factors = trigonometric functions
 - Typically, a smoother function results in a better polynomial approximation

Polynomial Approximation

- a: complex-valued array of size N
- \widehat{a} : Fourier transform of a
- $[N] = \{0, 1, \dots, N 1\}$ $N = pq \ (p, q > 1)$

 $\omega_N = e^{-2\pi i/N}$

- *a*: complex-valued array of size *N*
- \widehat{a} : Fourier transform of a
- $[N] = \{0, 1, ..., N 1\}$ $N = pq \ (p, q > 1)$ $\omega_N = e^{-2\pi i/N}$

However, approximating all the factors is time-consuming

- Fix a **base exponential function** and exploit the laws of exponents: $e^{ab} = (e^a)^b$
 - All data-independent factors can be precomputed
 - Bypasses the approximation problem

- $||f||_A = \sup\{|f(x)| : x \in A\}$
- P_{α} : set of polynomials of degree at most α

 $\xi, u \in \mathbb{R}$

- ϵ : tolerance
- r: number of approximation terms

$$\mathcal{P}_{\alpha,\xi,u} \coloneqq \underset{P \in P_{\alpha}}{\operatorname{arg\,min}} \|P(x) - e^{uix}\|_{|x| \le |\xi|}$$
$$\xi(\epsilon, r) \coloneqq \sup\{\xi \ge 0 : \|\mathcal{P}_{r-1,\xi,\pi}(x) - e^{\pi ix}\|_{|x| \le \xi} \le \epsilon\}$$
$$\mathsf{We\ use\ this\ as\ a\ base}$$

Base Exponential Function

• If $\xi(\epsilon, r) \ge M/p$, the following holds for $|m| \le M$:

We approximate only the base, and re-scale the polynomial

General Target Range

- A slight modification of the algorithm allows the target range to be arbitrarily centered at $\mu \in \mathbb{Z}$

$$m \in [\mu - M, \mu + M]$$

$$A = (a_{k,l}) = a_{qk+l}$$

$$B = (b_{l,j}) = \omega_N^{\mu(l-q/2)} w_{\epsilon,r,j} (1 - 2l/q)^j$$

$$w_{\epsilon,r,j} : j^{th} \text{ coefficient of } \mathcal{P}_{r-1,\xi(\epsilon,r),\pi}$$

$$\hat{a}_m \sim \omega_{2p}^m \sum_{j \in [r]} ((m-\mu)/p)^j \sum_{k \in [p]} \omega_p^{mk} \sum_{l \in [q]} a_{k,l} b_{l,j}$$

Reordering operators

- Reordering operators results in a significant computational benefit
 - Achieve the lowest time complexity $O(N + M \log M)$

Dot Products

Outline

- Introduction
- Existing Works
- Proposed Method
- Experiments
- Conclusion

Experimental Setup

• We use both synthetic and real-world datasets

Dataset	Туре	# of Time Series	Length
$\{S_n\}_{n=12}^{22}$	Synthetic	1000	2 ⁿ
Urban Sound	Real-world	4347	32000
Air Condition	Real-world	29	19735
Stock	Real-world	4	1012

- Measure: relative ℓ_2 error
 - We use single-precision floating-point format, and set the relative ℓ_2 error to be less than 10^{-6}

- PFT shows state-of-the-art speed on all the datasets *without* sacrificing accuracy
 - Even when N is not a power of 2 or has a large prime

Precision vs. Speed

- PFT can set an arbitrary numerical precision
 - The trade-off is very useful when the fast evaluation is of utmost importance

$(N = 2^{-2})$					
	Precision				
M	10^{-6}	10^{-4}	10^{-2}		
29	1.273	1.249 (.98)	1.238 (.97)		
2^{10}	1.295	1.278 (.99)	1.244 (.96)		
2^{11}	1.332	1.293 (.97)	1.251 (.94)		
2^{12}	1.491	1.329 (.89)	1.277 (.86)		
2^{13}	1.526	1.400 (.92)	1.343 (.88)		
2^{14}	1.692	1.607 (.95)	1.512 (.89)		
2^{15}	1.940	1.872 (.96)	1.740 (.90)		
2^{16}	2.821	2.469 (.88)	2.297 (.81)		
2^{17}	5.411	4.590 (.85)	4.058 (.75)		
2^{18}	11.924	9.927 (.83)	8.733 (.73)		

n221

Anomaly Detection (1)

22

- PFT successfully detects the anomalies, regardless of different patterns of data
 - The outliers found by PFT exactly coincide with those by FFT

Anomaly Detection (2)

- PFT results in interpretable anomaly detections
 - Stock prices of Facebook, Amazon, Netflix, and Google
 - Each outlier is closely related to a real-world event

Outline

- Introduction
- Existing Works
- Proposed Method
- Experiments
- Conclusion

PFT (Partial Fourier Transform)

- Efficiently computes a part of Fourier coefficients
- Main ideas of PFT
 - Polynomial approximation of smooth twiddle factors
 - Base exponential function for precomputation
 - Reordering operators
- Experimental results
 - PFT shows state-of-the-art speed without accuracy loss

Thank you!

https://github.com/snudatalab/PFT