
Fast and Memory-Eicient Tucker Decomposition
for Answering Diverse Time Rangeeries

Jun-Gi Jang
Seoul National University

Republic of Korea
elnino4@snu.ac.kr

U Kang
Seoul National University

Republic of Korea
ukang@snu.ac.kr

ABSTRACT

Given a temporal dense tensor and an arbitrary time range, how
can we eciently obtain latent factors in the range? Tucker de-
composition is a fundamental tool for analyzing dense tensors to
discover hidden factors, and has been exploited in many data min-
ing applications. However, existing decomposition methods do not
provide the functionality to analyze a specic range of a temporal
tensor. The existing methods are one-o, with the main focus on
performing Tucker decomposition once for a whole input tensor.
Although a few existing methods with a preprocessing phase can
deal with a time range query, they are still time-consuming and
suer from low accuracy. In this paper, we propose Zoom-Tucker,
a fast and memory-ecient Tucker decomposition method for nd-
ing hidden factors of temporal tensor data in an arbitrary time
range. Zoom-Tucker fully exploits block structure to compress
a given tensor, supporting an ecient query and capturing local
information. Zoom-Tucker answers diverse time range queries
quickly and memory-eciently, by elaborately decoupling the pre-
processed results included in the range and carefully determining
the order of computations. We demonstrate that Zoom-Tucker is
up to 171.9× faster and requires up to 230× less space than existing
methods while providing comparable accuracy.

CCS CONCEPTS

• Computing methodologies→ Factorization methods.

KEYWORDS

Tucker decomposition, time range query, eciency
ACM Reference Format:

Jun-Gi Jang and U Kang. 2021. Fast and Memory-Ecient Tucker Decom-
position for Answering Diverse Time Range Queries . In Proceedings of the

27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD ’21), August 14–18, 2021, Virtual Event, Singapore. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3447548.3467290

1 INTRODUCTION

Given a temporal dense tensor and a time range (e.g., January -
March 2019), how can we eciently analyze the tensor in the given
time range? Many real-world data including stock data, video data,
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specic permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467290

	

𝐀(𝟑)

𝐀(𝟐)

𝐀(𝟏)

𝓖

Time
dimension

Temporal tensor
From Jan. 1, 2008
To May 6, 2020

① ② ③

Tucker results
for the time
range query

COVID-19
Start time
- Jan. 1, 2020
End time
- Apr. 30, 2020

Given Given Goal

A time range query

Figure 1: Given a temporal tensor and a user-provided time

range (start time and end time) query, the goal of the time-

ranged Tucker decomposition is to nd the patterns of the

temporal tensor at the range using Tucker decomposition.

and trac volume data are represented as temporal dense tensors.
Tensor decomposition has played an important role in various
applications including data clustering [4, 10], concept discovery [1,
13, 14], dimensionality reduction [16, 36], anomaly detection [18],
and link prediction [19, 24]. Tucker decomposition, one of the tensor
decomposition methods, has been recognized as a crucial tool for
discovering latent factors and detecting relations between them.

In practice, we analyze a given temporal tensor from various
perspectives. Assume a user is interested in investigating patterns of
various time ranges using Tucker decomposition. Given a temporal
tensor and a user-provided time range (start time and end time)
query, our goal is to nd the patterns of the temporal tensor at the
range using Tucker decomposition. For example, given a temporal
tensor including matrices collected between Jan. 1, 2008 to May
6, 2020, a user may be interested in Tucker decomposition of a
subrange between Jan. 1, 2020 to April 30, 2020 (see Figure 1).
Since Tucker decomposition generates factor matrices and a core
tensor to accurately approximate an input tensor, answering time
range queries, (i.e., performing Tucker decomposition of dierent
sub-tensors) yields dierent Tucker results. However, conventional
Tucker decomposition methods [5, 20, 25] based on Alternating
Least Square (ALS) is not appropriate for answering diverse time
range queries since they target performing Tucker decomposition
once for a given tensor; the methods require a high computational
cost and large storage space since they need to perform Tucker
decomposition of the sub-tensor included in a time range query
from scratch, every time the query is given. Due to this limitation,
the existing methods are not ecient in exploring diverse time
ranges for a given temporal tensor.

A few methods [12, 35] with a preprocessing phase can be
adapted to the time range query problem; before the query phase,
they preprocess a given tensor, and perform Tucker decomposition
with the preprocessed tensor for each time range query. However,
they suer from an accuracy issue for narrow time ranges since
preprocessed results are tailored for performing Tucker decomposi-
tion of the whole given temporal tensor. The results fail to capture
local patterns that appear only in a specic range.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

725

https://doi.org/10.1145/3447548.3467290
https://doi.org/10.1145/3447548.3467290

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

Zoom-Tucker (proposed) D-Tucker Tucker-als MACH Tucker-ts Tucker-�mts RTD

N
ar

ro
w

 T
im

e R
an

ge

10°2 1 102

Running Time (sec)

0.1

0.2

R
ec

on
st

ru
ct

io
n

Er
ro

r

!". $	×

BEST

(a) Boat data (128)

10°2 1 102

Running Time (sec)

0.1

0.2

R
ec

on
st

ru
ct

io
n

Er
ro

r

!"!. $×

BEST

(b) Video data (128)

10°2 1 102

Running Time (sec)

0.3

0.4

0.5

0.6

R
ec

on
st

ru
ct

io
n

Er
ro

r

!. #	×

BEST

(c) Stock data (128)

10°2 1 102

Running Time (sec)

0.1

0.2

0.3

R
ec

on
st

ru
ct

io
n

Er
ro

r

!. #	×

BEST

(d) Trac data (64)

10°2 1 102

Running Time (sec)

0.1

0.2

R
ec

on
st

ru
ct

io
n

Er
ro

r

!". $×

BEST

(e) FMA data (32)

10°1 101 103

Running Time (sec)

0.0

0.5

1.0

1.5

R
ec

on
st

ru
ct

io
n

Er
ro

r

!". $×

BEST

0 1000 2000 3000 4000 5000 6000 7000 8000

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Trust D-Tucker Tucker-als MACH Tucker-ts Tucker-�mts RTD
o.o.t.

(f) Absorb data (64)

W
id

e
Ti

m
e

Ra
ng

e

10°1 101 103

Running Time (sec)

0.1

R
ec

on
st

ru
ct

io
n

Er
ro

r

!. #×

BEST

(g) Boat data (2048)

10°1 101 103

Running Time (sec)

0.1

0.2

R
ec

on
st

ru
ct

io
n

Er
ro

r

!". $×

BEST

(h) Video data (2048)

10°1 101 103

Running Time (sec)

0.6

0.7

0.8

R
ec

on
st

ru
ct

io
n

Er
ro

r
BEST

(i) Stock data (2048)

10°1 101 103

Running Time (sec)

0.1

0.2

R
ec

on
st

ru
ct

io
n

Er
ro

r

!. #×

BEST

(j) Trac data (1024)

10°1 101 103

Running Time (sec)

0.1

0.2

R
ec

on
st

ru
ct

io
n

Er
ro

r

!!!. #×

BEST

(k) FMA data (512)

10°1 101 103

Running Time (sec)

0.5

1.0

R
ec

on
st

ru
ct

io
n

Er
ro

r

!!. #×

BEST

0 1000 2000 3000 4000 5000 6000 7000 8000

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Trust D-Tucker Tucker-als MACH Tucker-ts Tucker-�mts RTD
o.o.t.

(l) Absorb data (1024)
Figure 2: Trade-o between query time and reconstruction error of Zoom-Tucker and competitors, for narrow (a-f) and wide

(g-l) time range queries. o.o.t.: out of time (takes more than 20,000 seconds). Numbers after the data name represent the length

of time ranges; e.g., (128) means the length of a time range is 128 timesteps. Zoom-Tucker is closest to the best point with the

fastest query speed and the lowest reconstruction error.

Table 1: Symbol description.

Symbol Description

X temporal tensor (∈ I1 × ... × IN)
In & Jn dimensionality of the n-th mode ofX and G

b block size
ts & te starting and ending points of time range query
[ts , te] time range of a query
X<i> i-th temporal block tensor (∈ I1 × ...IN−1 × b)(
A<i>) (k) k -th factor matrix of i-th temporal block tensor
G<i> core tensor of i-th temporal block tensor
X̃ temporal tensor obtained in the time range [ts , te]
Ã(k) k -th factor matrix of time range query [ts , te]
G̃ core tensor of time range query [ts , te]
S index of temporal block tensor corresponding to ts
E index of temporal block tensor corresponding to te
⊗ Kronecker product
×n n-mode product

In this paper, we propose Zoom-Tucker (Zoomable Tucker de-
composition), a fast and memory-ecient Tucker decomposition
method to analyze a temporal tensor for diverse time ranges. Zoom-
Tucker enables us to discover local patterns in a narrow time
range (zoom-in), or global patterns in a wider time range (zoom-
out). Zoom-Tucker consists of two phases: the preprocessing phase
and the query phase. The preprocessing phase of Zoom-Tucker ex-
ploits block structure to lay the groundwork in achieving an ecient
query phase and capturing local information. In the query phase,
Zoom-Tucker addresses the high computational cost and space
cost by elaborately decoupling block results and carefully determin-
ing the order of computation. Thanks to these ideas, Zoom-Tucker
answers an arbitrary time range query with higher eciency than
existing methods. Through extensive experiments, we demonstrate
the eectiveness and eciency of our method compared to other
methods. The main contributions of this paper are as follows:
• Algorithm.We propose Zoom-Tucker, a fast and memory-
ecient Tucker decomposition method for answering di-
verse time range queries.
• Analysis. We provide both time and space complexities for
the preprocessing and query phases of Zoom-Tucker.

• Experiment. Experimental results show that Zoom-Tucker
answers time range queries up to 171.9× faster and requires
up to 230× less space than other methods while providing
comparable accuracy, as shown in Figures 2 and 6.
• Discovery. Thanks to Zoom-Tucker, we discover anoma-
lous ranges and trend changes in Stock dataset (Figures 8
and 9).

The code of our method and datasets are available at https:
//datalab.snu.ac.kr/zoomtucker.

2 PRELIMINARIES

We describe preliminaries on tensor operations and Tucker de-
composition, and then dene the problem addressed in this paper
(Section 2.3). The symbols we use in this paper are described in
Table 1.

2.1 Tensor and Its Operation

A tensor is a multi-dimensional array. Each dimension of a tensor
is calledmode . The length of each mode is called dimensionality
and denoted by I1, · · · , IN . In this paper, a vector, a matrix, and
an N -mode tensor are denoted by the boldface lower case (e.g.
a), boldface capitals (e.g. A), and boldface Euler script capital (e.g.
X ∈ RI1×I2×···×IN), respectively. Key operations for tensor include
Frobenius norm, Kronecker product, mode-n matricization, and
n-mode product. We refer the reader to [17] for their denitions.

2.2 Tucker Decomposition

Tucker decomposition transforms anN -order tensorX ∈ RI1×...×IN
into a core tensorG ∈ RJ1×...×JN and factor matricesA(n) ∈ RIn×Jn
for n = 1, ...,N . Factor matrices A(n) are column-orthogonal, and a
core tensor G is small and dense. Each factor matrixA(n) represents
the latent features of the n-th mode ofX, and each element of a core
tensorG is the weight of the relation composed of columns of factor
matrices. Given a tensor X, the goal of Tucker decomposition is to
obtain factor matrices A(n) and the core tensor G by minimizing
‖X−G×1A(1) · · · ×N A(N)‖2F as shown in the following equations:

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

726

https://datalab.snu.ac.kr/zoomtucker
https://datalab.snu.ac.kr/zoomtucker

X ≈ G ×1 A(1) · · · ×N A(N) ⇔ X(n) ≈ A(n)G(n)(⊗
N
k,nA

(k)T) (1)
Note that X(n) indicates the mode-n matricized version of X, G(n)
indicates the mode-n matricized version of G, and (⊗Nk,nA

(k)T)

indicates performing the entire Kronecker product of A(k)T in de-
scending order for k = N , ...,n + 1,n − 1, ..., 1.

ALS (Alternating Least Square) is a common approach for Tucker
decomposition as described in Appendix A. ALS approach itera-
tively updates a factor matrix of a mode while xing all factor
matrices of other modes. For updating each factor matrix A(n), a
dominant operation is to compute n-mode products between an
input tensorX (∈ I1 × ... × IN) and factor matrices A(k) (∈ Ik × Jk)
for k = N , ...,n + 1,n − 1, ..., 1 (line 4 of Algorithm 3). Computing
X(n)(⊗Nk,nA

(k)), the mode-n matricized version of the dominant
operation, takes O(J

∏N
i=1 Ii) time where X(n) is the mode-n ma-

tricized version of X.

2.3 Problem Denition

We describe the formal denition of the time range query problem
as follows:

Problem 1 (Time Rangeery on Temporal Tensor).
Given: a temporal dense tensor X ∈ RI1×I2 · · ·×IN and a time range

[ts , te] where IN is the length of the time dimension, and In is the

dimensionality of mode-n for n = 1, ...,N − 1,
Find: the Tucker results of the sub-tensor X̃ of X in the time range

[ts , te] eciently. The Tucker result includes factor matrices Ã(1), ...,
Ã(N), and core tensor G̃.

To address the time range query problem, a method should e-
ciently handle various time range queries. Given an arbitrary time
range query, existing methods [5, 20, 25] performing Tucker decom-
position from scratch requires a high computational cost and large
space cost. Compared to the aforementioned methods, Tucker de-
composition methods [12, 35] with a preprocessing phase save time
and space costs in that they allow us to compress a whole tensor
before a query phase, and then perform Tucker decomposition of a
sub-tensor corresponding to a given time range query by exploiting
the compressed tensor instead of the input tensor. However, they
are still unsatisfactory in terms of time, space, and accuracy for the
time range query problem since they are tailored for performing
Tucker decomposition of only the whole tensor once.

3 PROPOSED METHOD

In this section, we propose Zoom-Tucker, a novel method for
extracting key patterns of a temporal tensor in an arbitrary time
range. The following challenges need to be tackled:

C1 Dealingwith various time range queries. Each user deals
with dierent time ranges or a user analyze patterns for var-
ious time ranges. How can we preprocess a temporal tensor
to deal with various time ranges?

C2 Minimizing computational cost. Tucker decomposition
requires a high computational cost. How can we quickly
perform Tucker decomposition for a given time range query?

C3 Minimizing intermediate data. Imprudent computation
for Tucker decomposition provokes huge intermediate data.
How can we avoid generating huge intermediate data?

We address the challenges with the following main ideas:

Algorithm 1: Preprocessing phase of Zoom-Tucker

Input: temporal tensor X ∈ RI1×I2×···×IN−1×IN
Output: result sets Cn for n = 1, ..., N + 1
Parameters: block size b
1: compute the number B = d INb e of blocks
2: split X into block tensors X<i> ∈ RI1×. . .×b for i = 1, ..., B
3: for i ← 1 to B do

4: perform Tucker decomposition of Xi ≈

G<i> ×1 (A<i>)(1) · · · ×N (A<i>)(N)

5: store each factor matrices (A<i>)(n) in the results set Cn , for
n = 1, ..., N

6: store core tensor G<i> in the result set CN+1
7: end for

I1 Exploiting block structure enables a query phase to de-
crease the number of operations and memory requirements,
while capturing local information.

I2 Elaborately decoupling block results decreases the com-
putational cost of Tucker decomposition for a tensor ob-
tained in a given time range.

I3 Carefully determining the order of computation mini-
mizes intermediate data generation while avoiding redun-
dant computation.

Zoom-Tucker eciently computes Tucker decomposition for
various time range queries. Zoom-Tucker consists of two phases:
the preprocessing phase and the query phase. The preprocessing
phase is computed once for a given temporal tensor, while the query
phase is computed using the results of the preprocessing phase for
each time range query. Zoom-Tucker compresses a given tensor
block by block along the time dimension in the preprocessing phase.
Zoom-Tucker performs Tucker decomposition for each block. In
the query phase, Zoom-Tucker performs Tucker decomposition for
each time range query by 1) adjusting the rst and the last blocks
included in the time range to t the range and 2) carefully stitching
the block results in the time range.

3.1 Preprocessing Phase

The objective of the preprocessing phase is to manipulate a given
temporal tensor for an ecient query phase. In the query phase, per-
forming Tucker decomposition from scratch requires high computa-
tional cost and large space cost as the number of queries increases.
To avoid it, compressing a given tensor is inevitable to provide
fast processing in the query phase. Additionally, we consider that
compressed results need to contain local patterns that appear only
in specic ranges. The preprocessing phase of existing Tucker de-
composition methods [12, 25, 35] fails to support high eciency of
the query phase while maintaining local patterns. Then, how can
we compress a given tensor to deal with various time range queries?
Our main idea is to exploit a block structure: 1) carefully designat-
ing the form of a block, and 2) selecting a compression approach
for each block. In this paper, we 1) split a given temporal tensor
into sub-tensors along the time dimension, and 2) leverage Tucker
decomposition for each sub-tensor. The idea allows Zoom-Tucker
to support an ecient query phase and capture local patterns. Ad-
ditionally, the preprocessing phase is extensible for new incoming
tensors by performing Tucker decomposition of them.

To capture local information, we split a given tensor along the
time dimension. Let the reconstruction error at each timestep t be

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

727

2017-03
2017-07

2017-11

Date

0.4

0.6

0.8

R
ec

on
st

ru
ct

io
n

Er
ro

r

2009
2011

2013
2015

2017
2020

Date

0.4

0.6

0.8

R
ec

on
st

ru
ct

io
n

Er
ro

r

Figure 3: Reconstruction errors at each time point on Stock

dataset. The blue line presents reconstruction errors com-

puted from a whole temporal tensor, while the orange line

describes reconstruction errors computed from a sub-tensor

in a range. Performing Tucker decomposition from a sub-

tensor provides relatively low reconstruction errors.

measured by performing Tucker decomposition. The reconstruction

error is dened as ‖X(t)−X̂(t) ‖
2
F

‖X(t) ‖2F
where X(t) is an input sub-tensor

obtained at each timestep t and X̂(t) is the sub-tensor at timestep t
reconstructed from Tucker results. Figure 3 shows the reconstruc-
tion errors of Stock dataset at each time point. Given a sub-tensor
in a range that has relatively high errors, performing Tucker decom-
position of the sub-tensor (orange line in Figure 3) provides lower
errors than the preceding result computed from a whole temporal
tensor (blue line in Figure 3). This observation implies that decom-
posing a sub-tensor allows us to capture local information, leading
to low errors. Based on the observation, we construct sub-tensors
by splitting a temporal tensor along the time dimension and per-
form Tucker decomposition of each sub-tensor. It provides lower
error than performing Tucker decomposition of a whole tensor on
all the timesteps, by capturing local information.

To support an ecient query phase, we store the Tucker decom-
position results of sub-tensors. There are the two benets to lever-
aging Tucker decomposition in the preprocessing phase: 1) saving
the space cost due to the small preprocessed results compared to the
given tensor, and 2) enabling the query phase to exploit the mixed-

product property applicable to mixing matrix multiplication and Kro-
necker product, i.e., (AT ⊗BT)(C⊗D) = (ATC⊗BTD). Computing
(ATC⊗BTD) requires less costs than computing (AT ⊗BT)(C⊗D)
when the size of the four matrices is I × J and I >> J . The reason
is that the size of ATC and BTD is only J × J while the size of
(AT ⊗ BT) and (C ⊗ D) is J2 × I2 and I2 × J2, respectively. We
further present the exploitation of this property to achieve high
eciency of the query phase in Sections 3.2.3 and 3.2.4.

Figure 4 presents an overview of the preprocessing phase. With-
out loss of generality, we assume that the temporal mode is the last
mode (N th mode). We express a given tensor X as temporal block
tensorsX<i> ∈ RI1×I2×···×IN−1×b for i = 1, ..., d INb e (line 2 in Algo-
rithm 1) where b is a block size and IN is the dimensionality of the
time dimension. Then, we perform Tucker decomposition for each
temporal block tensorX<i> (line 4 in Algorithm 1), and store each
factor matrix (A<i>)(n) in a setCn and the core tensorG<i> in a set
CN+1 (lines 5 and 6 in Algorithm 1). Since the preprocessing phase
is computed once and aects errors of the query phase, this phase
prefers an accurate but slow Tucker decomposition method rather
than a fast but approximate Tucker decomposition one. Specically,
we use Tucker-ALS, which is stable and accurate, in this phase.

	

𝐀"𝟏$ (𝟏)

	 	

𝑏
𝑏

𝑏

Tucker result
of 𝓧"𝟏$

Tucker result
of 𝓧"𝟐$

Tucker result
of 𝓧"𝟑$

𝓧"𝟏$
𝓧"𝟐$
𝓧"𝟑$

Time

𝐀"𝟏$ (𝟐)

𝓖"𝟏$

𝐀"𝟏$ (𝟑)

𝐀"𝟐$ (𝟏)

𝐀"𝟐$ (𝟐)
𝐀"𝟐$ (𝟑)

𝓖"𝟐$

𝐀"𝟑$ (𝟏)

𝐀"𝟑$ (𝟐)

𝓖"𝟑$

𝐀"𝟑$ (𝟑)

Figure 4: Preprocessing phase of Zoom-Tucker.

3.2 Query Phase

The objective of the query phase is to eciently compute Tucker
decomposition for a given time range [ts , te]. The query phase of
Zoom-Tucker operates as follows:

S1. Given a time range [ts , te], we load Tucker results (i.e.,G<i> ,
(A<i>)(n)) of temporal block tensors X<i> for i = S, ..., E

where S = d tsb e and E = d
te
b e are the indices of the rst and

the last temporal block tensors including ts and te , respec-
tively.

S2. We adjust the Tucker results of X<S> and X<E> to t the
range since a part of themmay not be within the given range.

S3. Given the Tucker results of X<i> for i = S, .., E included
in the range, Zoom-Tucker updates factor matrices by e-
ciently stitching the Tucker results.

S4. After that, Zoom-Tucker updates the core tensor using fac-
tor matrices updated at Step S3 and the Tucker results.

S5. Zoom-Tucker repeatedly performs Steps S3 and S4 until
convergence.

The most important challenge of the ecient query phase is how to
minimize the computational cost for updating factor matrices (Step
S3) and the core tensor (Step S4) of the time range while minimizing
the intermediate data. To tackle the challenge, our main ideas are to
1) elaborately decouple X̃(n)

(
⊗Nk,nÃ

(k)T
)
based on preprocessed

results, and 2) carefully determine the order of computation.We rst
give an objective function and an update rule for the query phase
(Section 3.2.1). Then, we describe how to achieve high eciency of
Zoom-Tucker in detail (Sections 3.2.2 to 3.2.4).

3.2.1 Objective function and update rule. In the query phase, our
goal is to obtain factor matrices Ã(1), ..., Ã(N), and core tensor G̃ for
a given time range query [ts , te]. The query phase of Zoom-Tucker
alternately updates factor matrices, and core tensor as in ALS. We
minimize the following objective function as mode-n matricized
form for a time range [ts , te]:

L(n) = ‖X̃(n) − Ã
(n)G̃(n)(⊗

N
k,nÃ

(k)T)‖2F (2)

where X̃(n) is the mode-n matricized version of a tensor obtained in
the time range [ts , te], and G̃(n) is the mode-n matricized version of
G̃. From the objective function (2), we derive the following update
rule for n-th factor matrix (see the proof in Appendix B.1):

Lemma 1 (Update rule). When xing all but the n-th factor

matrix, the following update rule for the n-th factor matrix minimizes

the objective function (2).

Ã(n) ← X̃(n)
(
⊗Nk,nÃ

(k)
)
G̃T
(n)

(
C(n)

)−1
(3)

where C(n) ∈ RJn×Jn of the n-th mode is given by

C(n) = G̃(n)
(
⊗Nk,nÃ

(k)T Ã(k)
)
G̃T
(n) �

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

728

Algorithm 2: Query phase of Zoom-Tucker
Input: a time range [ts , te], and Tucker result sets Cn for n = 1, ..., N + 1
Output: factor matrices Ã(n) for n = 1, .., N , and core tensor G̃
Parameters: tolerance ϵ , and block size b
1: S ← d tsb e and E ← d

te
b e

2: load (A<i>)(k) and G<i> for i = S , ..., E from Ck for
k = 1, ..., N + 1

3: obtain (Ā<S>)(N) and (Ā<E>)(N) by eliminating the rows of
(A<S>)(N) and (A<E>)(N) excluded in the range

4: (Ā<S>)(N) → Q<S>R<S> , (Ā<E>)(N) → Q<E>R<E>

5: (A<S>)(N) ← Q<S> , G<S> ← G<S> ×N R<S> ,
(A<E>)(N) ← Q<E> , and G<E> ← G<E> ×N R<E>

6: repeat

7: for k = 1...N − 1 do
8: update Ã(k) by computing Equation (5) and orthogonalizing it

with QR decomposition
9: end for

10: update Ã(N) by computing Equation (7) and orthogonalizing it
with QR decomposition

11: update core tensor G̃ by computing Equation (8)
12: until the variation of an error is less than ϵ or the number of

iterations is larger than the maximum number of iterations
13: return Ã(k) for k = 1, ..., N and G̃

In contrast to naively computing Equation (3) with X̃(n), Zoom-
Tucker eciently computes Equation (3) by exploiting prepro-
cessed results obtained in the preprocessing phase.

Before describing an ecient update procedure, we introduce a
useful lemma (see the proof in Appendix B.2).

Lemma 2. Let S ∈ RJ×...×J and S′ ∈ RJ×...×J be N -order tensors,

and U(n) and V(n) for n = 1, ...,n − 1,n + 1, ...,N be matrices of size

I × J . Assume our goal is to compute the following equation:

S(n)
(
⊗Nk,nU

(k)TV(k)
)
S′T(n) (4)

where S(n) and S′(n) are the mode-n matricized version of S and

S′, respectively. Naively computing Equation (4) by rst comput-

ing ⊗Nk,nU
(k)TV(k) and multiply with the remaining matrices re-

quiresO(NI J2+ J2N + JN+1) time andO(J2N +NI J) space. Instead,
exploiting Equation (1) enables to compute Equation (4) eciently:

O(NI J2 + N JN+1) time and O(JN + NI J) space. �

For all n = 1, ...,N , C(n) is computed based on Lemma 2, by re-
placing S(n), U(k), V(k), and S′(n) with G̃(n), Ã(k), Ã(k), and G̃(n),
respectively.

3.2.2 Adjusting edge blocks of time range query (Step S2). Before
updates, we adjust the Tucker results of X<S> and X<E> , the
temporal block tensors corresponding to ts and te of the given time
range [ts , te], respectively. The temporal factor matrices (A<S>)(N)

of X<S> and (A<E>)(N) of X<E> may contain the rows that are
not included in the range (see Figure 5(a)). To t to the given time
range, we need to remove the non-included rows of (A<S>)(N) and
(A<E>)(N), and adjust the Tucker results of X<S> and X<E> .

Let p be S or E. For the temporal factor matrix (A<p>)(N) of
X<p> in the range, Zoom-Tucker obtains the manipulated tempo-
ral factor matrix (Ā<p>)(N) by removing the rows of (A<p>)(N)

that are not included in the time range (line 3 in Algorithm 2).
Next, we perform QR decomposition to make (Ā<p>)(N) maintain

𝐀!"# (%) 𝒕𝒔
𝑡" + 1
⋮

𝑡# − 1
𝒕𝒆

𝑡" − 1

⋮
𝑡# + 1

Out of
range

Out of
range

⋮𝐀!"# (%)

𝐀!'# (%)

(a) Example of adjustment

𝐀"(")

𝐀"(")[𝑆]

𝐀"(")[𝑖]

𝐀"(")[𝐸]

𝑡$
𝑡$ + 1
⋮

𝑡% − 1
𝑡%

⋮

(b) Example of division
Figure 5: Examples of adjustment (Section 3.2.2) and division

(Section 3.2.3).

column-orthogonality (line 4 in Algorithm 2); we use (Q<p>)(N)

as the temporal factor matrix of X<p> and update the core tensor
G<p> ← G<p> ×N (R<p>)(N) where (Q<p>)(N) and (R<p>)(N)

are the results of QR decomposition (line 5 in Algorithm 2).

3.2.3 Eicient update of factor matrices (Step S3). We present how
to eciently update the factor matrix of the non-temporal modes
and the temporal mode.

Updating factor matrix of non-temporal modes. Consider
updating then-th factormatrix, which corresponds to a non-temporal
mode. A naive approach is to reconstruct X̃(n) from the Tucker
results of the preprocessing phase and compute Equation (3). How-
ever, it requires large time and space costs since the reconstructed
tensor is much larger than the preprocessed results. Our main ideas
are to 1) elaborately decouple X̃(n)

(
⊗Nk,nÃ

(k)
)
block by block us-

ing the preprocessed results, and 2) carefully determine the order
of computations, which signicantly reduces time and space costs
compared to the naive approach.We derive Equation (5) in Lemma 3
to update Ã(n) (see the proof in Appendix B.3).

Lemma 3 (Updating factor matrix of a non-temporal mode).
Assume that X̃(n) is replacedwith the preprocessed results (i.e., (A<i>)(n)

and G<i>
). Then, the following equation is equal to Equation (3) in

Lemma 1 for n-th mode:

Ã(n) ←
E∑
i=S
(A<i>)(n)(B<i>)(n)

(
C(n)

)−1
(5)

where the i-th block matrix (B<i>)(n) of the n-th mode is

(B<i>)(n) = G<i>
(n)

(
(A<i>)(N)T Ã(N)[i] ⊗

(
⊗N−1k,n (A

<i>)(k)T Ã(k)
))

G̃T
(n),

(6)
and C(n) is dened in Lemma 1. (A<i>)(k) is the k-th factor matrix of

the temporal block tensor X<i>
, and G<i>

(n) is the mode-n matricized

version of the core tensor of X<i>
. Ã(N)[i] is a sub-matrix of the

temporal factor matrix Ã(N) such that,
Ã(N)[S]
...

Ã(N)[E]

 = Ã(N)

To compute (A<i>)(N)T Ã(N)[i], we split Ã(N) into sub-matrices

Ã(N)[i] (i = S, ..., E) along the time dimension (see Figure 5(b));

the size of Ã(N)[i] for i = S + 1, ..., E − 1 is b × JN , and that of

Ã(N)[S] and Ã(N)[E] is (b − rS) × JN and (b − rE) × JN , respectively,

where rS and rE are the number of the rows removed with respect to

ts and te , respectively. �

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

729

Zoom-Tucker eciently updates Ã(n) with Equation (5). Zoom-
Tuckerminimizes the intermediate data and reduces the high com-
putational cost by independently computing C(n) and (B<i>)(n)

for i = S, ..., E. Note that (B<i>)(n) for i = S, ..., E is computed
based on Lemma 2, by replacing S(n), U(k), V(k), and S′(n) with
G<i>
(n) , (A<i>)(k), Ã(k) (or Ã(N)[i]), and G̃(n), respectively. Next,

we obtain Ã(n) by summing up the results of (A<i>)(n)(B<i>)(n)(
C(n)

)−1
for i = S, ..., E. For orthogonalization, we then update

Ã(n) ← Q̃(n) after QR decomposition Ã(n) → Q̃(n)R̃(n) (line 8 in
Algorithm 2).

Updating factor matrix of temporal mode. The goal is to
update the factor matrix Ã(N) of the temporal mode by using the
preprocessed results instead of X̃(N). Reconstructing X̃(N) requires
high space and time costs in Equation (3). Based on our ideas used
for the non-temporal modes, we eciently update Ã(N) by com-
puting Equation (7) in Lemma 4 (see the proof in Appendix B.4).

Lemma 4 (Updating factor matrix of temporal mode). As-
sume that X̃(N) is replacedwith the preprocessed results (i.e., (A<i>)(n)

and G<i>
). Then, the following equation is equal to Equation (3) in

Lemma 1 for the temporal mode:

Ã(N) ←

(A<S>)(N)(B<S>)(N)

...

(A<E>)(N)(B<E>)(N)

(
C(N)

)−1
(7)

where the i-th matrix (B<i>)(N) ∈ RJN ×JN for i = S, ..., E is

(B<i>)(N) = G<i>
(N)

(
⊗N−1k=1 (A

<i>)(k)T Ã(k)
)
G̃T
(N)

(A<i>)(k) is the k-th factor matrix of X<i>
, G<i>
(N) is the mode-N

matricized version of the core tensor of X<i>
, and C(N) is equal to

G̃(N)
(
⊗N−1k=1 Ã

(k)T Ã(k)
)
G̃T
(N). �

We obtain Ã(N) by using (C(N))−1, (A<i>)(N), and (B<i>)(N)

for i = S, ..., E. Zoom-Tucker eciently updates Ã(N) by indepen-
dently computing C(N) and (B<i>)(N) for i = S, ..., E. (B<i>)(N)

is eciently computed based on Lemma 2, by replacing S(n), U(k),
V(k), and S′(n) with G<i>

(N) , (A
<i>)(k), Ã(k), and G̃(N), respectively.

For orthogonalization, we update Ã(N) ← Q̃(N) after QR decom-
position Ã(N) → Q̃(N)R̃(N) (line 10 in Algorithm 2).

3.2.4 Eicient update of core tensor (Step S4). At the end of each
iteration, Zoom-Tucker updates the core tensor using the factor
matrices: G̃(N) ← Ã(N)T X̃(N)

(
⊗N−1k=1 Ã

(k)
)
(mode-N matricization

of line 8 in Algorithm 3). We eciently compute the core tensor by
avoiding reconstruction of X̃(N) and carefully determining the order
of computation. We replace X̃(N) with the preprocessed results and
rene the equation with block decoupling and the mixed-product

property (see Equation (10) in Appendix B.4).

G̃(N) ←

(
E∑
i=S

(Ã(N)T [i])(A<i>)(N)G<i>
(N)

(
⊗N−1k=1 (A

<i>)(k)T Ã(k)
))

(8)

With Equation (8), Zoom-Tucker eciently updates G̃, reducing
the intermediate data and the computational cost. For each i , Zoom-
Tucker computes (Ã(N)T [i])(A<i>)(N) G<i>

(N)

(
⊗N−1k=1 (A

<i>)(k)T Ã(k)
)

Table 2: Time and space complexities of Zoom-Tucker and

othermethods for a time range [ts , te]. The optimal complex-

ities are in bold. I , J , M , N , and l[ts ,te] are described in Sec-

tion 3.3. S is a sampling rate for MACH.

Algorithm Time Space

Zoom-Tucker O(l[ts,te]IMN2J2/b) O(l[ts,te]NIJ/b)
D-Tucker [12] O(l[ts ,te]I

N−2MN J2) O(l[ts ,te]I
N−2 J)

Tucker-ALS O(l[ts ,te]I
N−1MN J) O(l[ts ,te]I

N−1)
MACH [35] O(Sl[ts ,te]I

N−1MN J) O(Sl[ts ,te]I
N−1)

RTD [5] O(l[ts ,te]I
N−1MN) O(l[ts ,te]I

N−1)
Tucker-ts [25] O(l[ts ,te]I

N−1N +MNI JN) O(l[ts ,te]I
N−1 + NI JN)

Tucker-ttmts [25] O(l[ts ,te]I
N−1N +MNI J2N−2) O(l[ts ,te]I

N−1 + NI JN)

after transforming it into n-mode products as in Equation (1). After
that, Zoom-Tucker obtains G̃(N) by summing up the results and
reshape it to the core tensor G̃ (line 11 in Algorithm 2).
3.3 Analysis

We analyze the time and space complexities of Zoom-Tucker in
the preprocessing phase and the query phase. We assume that
I = I1 = ... = IN−1, and J = J1 = ... = JN . M is the number of
iterations, l[ts ,te] = te − ts + 1 is the length of a time range query,
N is the order of a given tensor, I is the dimensionality, b is the
block size, B is the number of blocks, and J is the rank. All proofs
are summarized in Appendices B.5 to B.8.

Time complexity. We analyze computational cost of Zoom-
Tucker in the preprocessing phase and the query phase.

Theorem 1. The preprocessing phase takesO(MNIN−1 JbB) time.

Theorem 2. Given a time range query [ts , te], the query phase of

Zoom-Tucker takes O
(
MN J2l[ts ,te]

(
1 + N I

b +
N JN−1

b

))
time. �

Space complexity. We provide analysis for the space cost of
Zoom-Tucker in the preprocessing phase and the query phase.

Theorem 3. Zoom-Tucker requiresO
(
NI J (d INb e) + IN J

)
space

to store the Tucker results in the preprocessing phase. �

Theorem 4. Given a time range query [ts , te], Zoom-Tucker

requires O
(
NI J (d

l[ts ,te]
b e) + Jl[ts ,te]

)
space in the query phase. �

Table 2 shows the time and space complexities of Zoom-Tucker
and competitors for a given time range query [ts , te]. The time
and space complexities of Zoom-Tucker mainly depend on I and
l[ts ,te]. We also note that the block size b reduces the complexities
of Zoom-Tucker. We compare the time and space complexities of
Zoom-Tucker with those of the second-best method, D-Tucker.
For both time and space complexities, the result of dividing the
complexity of Zoom-Tucker by that of D-Tucker is N

IN−3b . Zoom-
Tucker has better time and space complexities than D-Tucker since
IN−3b is larger than N in real-world datasets; for example, in the
experiments, we use 50 as the default block size b while the order of
the real-world datasets is 3 or 4. Asb increases, the space complexity
of the preprocessing and the query phases, and the time complexity
of the query phase decrease; however, a large block size b can
provoke a high reconstruction error for a narrow time range query
since the preprocessing phase with the large b cannot capture local
information. In Section 4.4, we experimentally nd a block size that
enables the preprocessing phase to capture local information with
low reconstruction errors for narrow time range queries.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

730

Table 3: Description of real-world tensor datasets.

Dataset Dimensionality Length l[ts ,te] of Time Range Summary

Boats1 [37] 320 × 240 × 7000 (128, 2048) Video
Walking Video [25] 1080 × 1980 × 2400 (128, 2048) Video
Stock3 3028 × 54 × 3050 (128, 2048) Time series
Trac4 [30] 1084 × 96 × 2000 (64, 1024) Trac volume
FMA5 [8] 7994 × 1025 × 700 (32, 512) Music
Absorb6 192 × 288 × 30 × 1200 (64, 1024) Climate

4 EXPERIMENT

We present experimental results to answer the following questions.
Q1 PerformanceTrade-o (Section 4.2).DoesZoom-Tucker

provide the best trade-o between query time and recon-
struction error?

Q2 Space Cost (Section 4.3). What is the space cost of Zoom-
Tucker and competitors for preprocessed results?

Q3 Eects of the block size b (Section 4.4).How does a block
size b aect query time and reconstruction error of Zoom-
Tucker?

Q4 Discovery (Section 4.5).What pattern does Zoom-Tucker
discover in dierent time ranges?

4.1 Experimental Settings

Machine.We run experiments on a workstation with a single CPU
(Intel Xeon E5-2630 v4 @ 2.2GHz), and 512GB memory.

Dataset.Weuse six real-world dense tensors in Table 3. Boats1 [37]
and Walking Video2 [25] datasets contain grayscale videos in the
form of (height, width, time; value). Stock dataset3 contains 5 basic
features (open price, high price, low price, close price, trade vol-
ume) and 49 technical indicators features of Korea Stocks. Stock
dataset has the form of (stock, features, date; value). The basic fea-
tures are collected daily from Jan. 2, 2008 to May 6, 2020. Trac
dataset4 [30] contains trac volume information in the form of
(sensor, frequency, time; measurement). FMA dataset5 [8] contains
music information: (song, frequency, time; value). We convert a
time series into an image of a log-power spectrogram for each
song. Absorb dataset6 is about absorption of aerosol in the form of
(longitudes, latitudes, altitude, time; measurement).

Competitors. We compare Zoom-Tucker with 6 Tucker de-
composition methods based on ALS approach. Zoom-Tucker and
other methods are implemented in MATLAB (R2019b). We use the
open sourced codes for 4 competitors: D-Tucker7, Tucker-ALS [3],
Tucker-ts8, and Tucker-ttmts8. For MACH, we run Tucker-ALS in
Tensor Toolbox [3] for a sampled tensor after sampling elements of
a tensor; we use our implementation for a sampling scheme. We
use the source code of RTD [5] provided by the authors.

Parameters. The parameter settings used for experiments are
described in Appendix C.

Implementation details. In the time range query problem,
Zoom-Tucker, D-Tucker, andMACHpreprocess a given tensor, and
then perform Tucker decomposition for a time range query using
preprocessed results included in the range. In contrast, Tucker-ALS

1http://changedetection.net/
2https://github.com/OsmanMalik/tucker-tensorsketch
3https://datalab.snu.ac.kr/zoomtucker
4https://github.com/orinsch/BigTracData
5https://github.com/mde/fma
6https://www.earthsystemgrid.org/
7https://datalab.snu.ac.kr/dtucker/
8https://github.com/OsmanMalik/tucker-tensorsketch

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
0.0

0.2

0.4

0.6

0.8

1.0

Zoom-Tucker (proposed) D-Tucker MACH Input Tensor

Boats Video Stock Tra�ic FMA Absorb
Data

102

104

Sp
ac

e
C

os
t

(M
B

)

!	×

$%	× &'(×
)*	×

')	×

).,×

Figure 6: Space cost for storing preprocessed results. Input
Tensor corresponds to the space cost of Tucker-ALS, Tucker-

ts, Tucker-ttmts, and RTD. Zoom-Tucker requires up to

230× less space than competitors.

and RTD perform Tucker decomposition using a sub-tensor in-
cluded in a time range query. Although Tucker-ts and Tucker-ttmts
have a preprocessing phase, they also perform Tucker decomposi-
tion from scratch for a time range query since there is an inseparable
preprocessed result along the time dimension.

Reconstruction error. Given an input tensor X and the recon-
struction X̂ from the output of Tucker decomposition, reconstruc-

tion error is dened as ‖X−X̂‖
2
F

‖X‖2F
. Reconstruction error describes

how well the reconstruction X̂ of Tucker decomposition represents
an input tensor X.

4.2 Trade-o between Query Time and

Reconstruction Error (Q1)

We compare the running time and reconstruction error of Zoom-
Tuckerwith those of competitors for various time ranges. For each
dataset, we use the narrowest and the widest time ranges among
the ranges described in Table 3. Figure 2 shows that Zoom-Tucker
is the closest method to the best point with the smallest error and
running time. Zoom-Tucker is up to 171.9× and 111.9× faster
than the second-fastest method, in narrow and wide time ranges,
respectively, with similar errors.

4.3 Space Cost (Q2)

We compare the storage cost of Zoom-Tucker with those of com-
petitors for storing preprocessed results. Note that memory re-
quirements for a time range query are proportional to the storage
cost since preprocessed results or an input tensor is the dominant
term in the space cost. Figure 6 shows that Zoom-Tucker requires
the lowest space; Zoom-Tucker requires up to 230× less space
than the second-best method D-Tucker. Zoom-Tucker has more
compression rate on the 4-order tensor, Absorb dataset.

4.4 Eects of Block Size b (Q3)

We investigate the eects of block size b on running time and recon-
struction error of Zoom-Tucker. We use block sizes 10, 25, 50, 100,
and 200 on Stock, Trac, and Absorb datasets. As shown in Fig-
ures 7(a) to 7(c), there are trade-o relationships between running
time and reconstruction error for narrow time range queries. In
Figures 7(d) to 7(f), the running time of Zoom-Tucker is inversely
proportional to b for a wide range query while the reconstruction
error is not sensitive to b. A large b prevents the preprocessing
phase from capturing local information so that it is challenging
to serve narrow time range queries. For wide time range queries,
local information has little eect on reconstruction errors since

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

731

http://changedetection.net/
https://github.com/OsmanMalik/tucker-tensorsketch
https://datalab.snu.ac.kr/zoomtucker
https://github.com/florinsch/BigTrafficData
https://github.com/mdeff/fma
https://www.earthsystemgrid.org/
https://datalab.snu.ac.kr/dtucker/
https://github.com/OsmanMalik/tucker-tensorsketch

0 1000 2000 3000 4000 5000 6000 7000 8000

101

4£ 100

6£ 100

2£ 101

Running Time Reconstruction Error

101 102

Block Size (b)

0.3

0.4

0.5

R
ec

on
st

ru
ct

io
n

Er
ro

r

0.01

0.07

0.12

R
un

ni
ng

Ti
m

e
(s

ec
)

(a) Stock data (128)

101 102

Block Size (b)

0.02

0.03

0.04

R
ec

on
st

ru
ct

io
n

Er
ro

r

0.02

0.04

R
un

ni
ng

Ti
m

e
(s

ec
)

(b) Trac data (64)

101 102

Block Size (b)

0.16

0.17

0.18

R
ec

on
st

ru
ct

io
n

Er
ro

r

0.02

0.06

0.1

R
un

ni
ng

Ti
m

e
(s

ec
)

(c) Absorb data (64)

101 102

Block Size (b)

0.55

0.65

R
ec

on
st

ru
ct

io
n

Er
ro

r

0.05

1.0

2.0

R
un

ni
ng

Ti
m

e
(s

ec
)

(d) Stock data (2048)

101 102

Block Size (b)

0.04

0.05

R
ec

on
st

ru
ct

io
n

Er
ro

r

0.05

0.25

0.45

R
un

ni
ng

Ti
m

e
(s

ec
)

(e) Trac data (1024)

101 102

Block Size (b)

0.15

0.17

0.19

R
ec

on
st

ru
ct

io
n

Er
ro

r

0.5

1.5

R
un

ni
ng

Ti
m

e
(s

ec
)

(f) Absorb data (1024)
Figure 7: Sensitivity with respect to block size b on Stock, Trac, and Absorb datasets. Numbers after the data name represent

the length of time ranges; e.g., (128) means the length of time range is te − ts + 1 = 128 timesteps. (a,b,c) There are trade-

o relationships between running time and reconstruction error for narrow time range queries. (d,e,f) For wide time range

queries, the running times decrease while the errors do not change much, as block size increases.

Date
(Mar.-Apr., 2020)

Date
(May-Jun., 2018)

Date
(Sep.-Oct., 2014)

2008
2010

2011
2013

2014
2016

2017
2019

2020

Date

1.8

2.0

2.2

2.4

D
i�

er
en

ce
R

at
io

Threshold
① ②③

2014-09-22

2014-10-22

Date

M
ea

n
Va

lu
e

① 2018-05-26

2018-06-25

Date

M
ea

n
Va

lu
e

② 2020-03-23

2020-04-22

Date

M
ea

n
Va

lu
e

③

Mean closed prices of all the stocks at each day

(Issue) Regional
election of South

Korea

(Issue) Characterized
COVID-19 as a

pandemic

(Issue) Threat of
military conflict

Figure 8: Anomalous two-month ranges and their related

events, found by Zoom-Tucker.

capturing widespread patterns is more benecial in reducing errors.
Therefore, we select 50, which is the largest value providing small
errors for narrow time range queries, for the default block size to
preprocess all datasets in other experimental sections.

4.5 Discovery (Q4)

On Stock dataset, we discover interesting results by answering
various time range queries with Zoom-Tucker.

Finding anomalous ranges. The goal is to nd narrow time
ranges that are anomalous, compared to the entire time range. For
the goal, we select every consecutive two-month interval from Jan.
1, 2008 to Apr. 30, 2020, perform Tucker decomposition for each of
the intervals using Zoom-Tucker, and nd anomalous ranges that
deviate the most from the entire ranges. Given a two-month range
r , and its corresponding sub-tensor X̃, we compute the anomaly

score for r using the dierence ratio ‖X̃−Ŷ‖
2
F

‖X̃−Ẑ‖2F
where Ŷ and Ẑ are

the sub-tensors for r reconstructed from the Tucker results of 1) the
entire range query, and 2) the two-month range query, respectively.

The leftmost plot of Figure 8 shows the dierence ratios and
the top three anomalous ranges where the threshold indicates 2
standard deviations from the mean. The right three plots of Figure 8
show that the three anomalies follow the similar plunging pattern
of prices from issues aecting the stock market.

Analyzing trend change. We analyze the change of yearly
trend of Samsung Electronics in the years 2013 and 2018. For each
of the range (year 2013 or 2018), we perform Zoom-Tucker and
get the feature matrix Ã(1) each of whose rows contain the latent
features of a stock. We also manually pick 33 smartphone-related
stocks and 46 semiconductor-related stocks, and compare the co-
sine distance between the latent feature vectors of each stock and
Samsung Electronics.

Figure 9 shows the result. Note that there is a clear change of the
distances between year 2013 and 2018: Samsung Electronics is more

0.5

1.0

1.5

33 Smartphone-related stocks 46 Semiconductor-related stocks

2013

2018

Mean distance = 0.96

Mean distance = 0.78 Mean distance = 0.95

Mean distance = 0.75

Each cell denotes the distance between the rows of the factor matrix
𝐀"("), corresponding to Samsung Electronics and a stock

Close

Distant
< <

Figure 9: Cosine distance between feature vectors of Sam-
sung Electronics and other stocks related to smartphone or

semiconductors in 2013 and 2018. Zoom-Tucker helps cap-

ture the clear change of the trend, where Samsung Electron-
ics is more close to smartphone-related stocks in 2013, but

to semiconductor-related stocks in 2018.

close to smartphone-related stocks in 2013, but to semiconductor-
related stocks in 2018. This result exactly reects the sales trend
of Samsung Electronics; the annual sales of its smartphone division
are 3.7× larger than those of its semiconductor division in 2013,
while in 2018 the annual sales of its semiconductor division are
30% larger than those of its smartphone division. Zoom-Tucker
enables us to quickly and accurately capture this trend change.

5 RELATEDWORK

We review related works for ecient tensor decomposition, block-
based tensor decomposition, and time range query for tensors.

Ecient tensor decomposition. Many works have been de-
voted to computing ecient tensor decomposition in various set-
tings. Previous works [2, 14, 15, 28, 38] develop ecient tensor
decomposition methods on distributed systems. Several tensor de-
composition methods [21, 26, 27, 31, 32, 34] have been proposed
for sparse tensors; however, they target performing tensor decom-
position only once for the whole data. There are several works [7,
9, 18, 22, 33, 39] that perform tensor decomposition in streaming
settings. Zoom-Tucker is dierent from the above methods since
it handles arbitrary time range queries in a single machine.

Tensor decompositionwith block-wise computation.Many
tensor decomposition methods have exploited block-wise compu-
tation for parallel computation. [6, 23, 29] proposed parallel CP
decomposition methods which perform CP decomposition block
by block and then concatenate the results of the blocks. Austin
et al. [2] proposed a distributed algorithm that computes n-mode
product, gram matrix, and eigenvectors with the small blocks of
a given tensor. Unlike the above methods which do not consider

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

732

time ranges, the goal of our Zoom-Tucker is to quickly provide
Tucker decomposition results for a given time range query.

Time range query for tensors. Zoom-SVD [11] deals with the
time range query problem, but it is suitable only for multiple time
series data represented as a matrix. Although there is no existing
method that precisely addresses the time range query problem for
tensors, there are several methods [12, 25, 35] that can be adapted to
solve the problem. They perform a preprocessing phase by exploit-
ing a sampling technique [35] or randomized SVD [12] before the
query phase, and then obtain Tucker results using the preprocessed
results in the query phase. However, they do not satisfy the desired
properties for the solution: fast running time, low space cost, and
accuracy. On the other hand, Zoom-Tucker eciently and accu-
rately provides answers to time range queries by exploiting the
preprocessed results.

6 CONCLUSIONS

In this work, we propose Zoom-Tucker, an ecient Tucker decom-
position method to discover latent factors in a given time range
from a temporal tensor. Zoom-Tucker eciently answers diverse
time range queries with the preprocessing phase and the query
phase. In the preprocessing phase, Zoom-Tucker lays the ground-
work for an ecient time range query by compressing sub-tensors
along time dimension block by block. Given a time range query in
the query phase, Zoom-Tucker elaborately stitches compressed
results reducing computational cost and space cost. Experiments
show that Zoom-Tucker is up to 171.9× faster and requires up to
230× less space than existing methods, with comparable accuracy
to competitors. With Zoom-Tucker, we discover interesting pat-
terns including anomalous ranges and trend changes in a real-world
stock dataset. Future research includes extending the method for
sparse tensors.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of
Korea(NRF) funded by MSIT(2019R1A2C2004990). The Institute of
Engineering Research and ICT at Seoul National University pro-
vided research facilities for this work. U Kang is the corresponding
author.

REFERENCES

[1] Dawon Ahn, Sangjun Son, and U Kang. 2020. Gtensor: Fast and Accurate Tensor
Analysis System using GPUs. In CIKM. ACM, 3361–3364.

[2] Woody Austin, Grey Ballard, and Tamara G. Kolda. 2016. Parallel Tensor Compres-
sion for Large-Scale Scientic Data. In IPDPS. IEEE Computer Society, 912–922.

[3] Brett W. Bader, Tamara G. Kolda, et al. 2017. MATLAB Tensor Toolbox Version
3.0-dev. Available online. https://www.tensortoolbox.org

[4] Xiaochun Cao, Xingxing Wei, Yahong Han, and Dongdai Lin. 2015. Robust Face
Clustering Via Tensor Decomposition. IEEE Trans. Cybernetics 45, 11 (2015),
2546–2557.

[5] Maolin Che and YiminWei. 2019. Randomized algorithms for the approximations
of Tucker and the tensor train decompositions. Adv. Comput. Math. 45, 1 (2019),
395–428.

[6] Dan Chen, Yangyang Hu, Lizhe Wang, Albert Y. Zomaya, and Xiaoli Li. 2017.
H-PARAFAC: Hierarchical Parallel Factor Analysis of Multidimensional Big Data.
TPDS 28, 4 (2017), 1091–1104.

[7] Dongjin Choi, Jun-Gi Jang, and U Kang. 2019. S3CMTF: Fast, accurate, and
scalable method for incomplete coupled matrix-tensor factorization. PLOS ONE
14, 6 (06 2019), 1–20.

[8] Michaël Deerrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson.
2017. FMA: A Dataset for Music Analysis. In ISMIR. arXiv:1612.01840 https:
//arxiv.org/abs/1612.01840

[9] Ekta Gujral, Ravdeep Pasricha, and Evangelos E. Papalexakis. 2018. SamBaTen:
Sampling-based Batch Incremental Tensor Decomposition. In SDM. 387–395.

[10] Heng Huang, Chris H. Q. Ding, Dijun Luo, and Tao Li. 2008. Simultaneous tensor
subspace selection and clustering: the equivalence of high order svd and k-means
clustering. In SIGKDD. ACM, 327–335.

[11] Jun-Gi Jang, Dongjin Choi, Jinhong Jung, and U Kang. 2018. Zoom-SVD: Fast
and Memory Ecient Method for Extracting Key Patterns in an Arbitrary Time
Range. In CIKM. ACM, 1083–1092.

[12] Jun-Gi Jang and U Kang. 2020. D-Tucker: Fast and Memory-Ecient Tucker
Decomposition for Dense Tensors. In ICDE. IEEE, 1850–1853.

[13] Byungsoo Jeon, Inah Jeon, Lee Sael, and U Kang. 2016. SCouT: Scalable coupled
matrix-tensor factorization - algorithm and discoveries. In ICDE. IEEE Computer
Society, 811–822.

[14] Inah Jeon, Evangelos E. Papalexakis, U. Kang, and Christos Faloutsos. 2015.
HaTen2: Billion-scale tensor decompositions. In ICDE. 1047–1058.

[15] Oguz Kaya and Bora Uçar. 2015. Scalable sparse tensor decompositions in dis-
tributed memory systems. In SC. ACM, 77:1–77:11.

[16] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and
Dongjun Shin. 2015. Compression of Deep Convolutional Neural Networks
for Fast and Low Power Mobile Applications. CoRR abs/1511.06530 (2015).
arXiv:1511.06530 http://arxiv.org/abs/1511.06530

[17] Tamara G. Kolda and Brett W. Bader. 2009. Tensor Decompositions and Applica-
tions. SIAM Rev. 51, 3 (2009), 455–500.

[18] Taehyung Kwon, Inkyu Park, Dongjin Lee, and Kijung Shin. 2021. SliceNStitch:
Continuous CP Decomposition of Sparse Tensor Streams. CoRR abs/2102.11517
(2021).

[19] Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. 2020. Tensor
Decompositions for Temporal Knowledge Base Completion. In ICLR. OpenRe-
view.net.

[20] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. 2000. On the Best
Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors.
SIAM J. Matrix Analysis Applications 21, 4 (2000), 1324–1342.

[21] Dongha Lee, Jaehyung Lee, and Hwanjo Yu. 2018. Fast Tucker Factorization for
Large-Scale Tensor Completion. In ICDM. IEEE Computer Society, 1098–1103.

[22] Dongjin Lee and Kijung Shin. 2021. Robust Factorization of Real-world Tensor
Streams with Patterns, Missing Values, and Outliers. CoRR abs/2102.08466 (2021).

[23] Xinsheng Li, Shengyu Huang, K. Selçuk Candan, and Maria Luisa Sapino. 2016.
2PCP: Two-phase CP decomposition for billion-scale dense tensors. In ICDE. IEEE
Computer Society, 835–846.

[24] Yu Liu, Quanming Yao, and Yong Li. 2020. Generalizing Tensor Decomposition
for N-ary Relational Knowledge Bases. InWWW. ACM / IW3C2, 1104–1114.

[25] Osman Asif Malik and Stephen Becker. 2018. Low-Rank Tucker Decomposition
of Large Tensors Using TensorSketch. In NeurIPS. 10117–10127.

[26] Sejoon Oh, Namyong Park, Jun-Gi Jang, Lee Sael, and U Kang. 2019. High-
Performance Tucker Factorization on Heterogeneous Platforms. IEEE Trans.

Parallel Distributed Syst. 30, 10 (2019), 2237–2248.
[27] Sejoon Oh, Namyong Park, Lee Sael, and U. Kang. 2018. Scalable Tucker Factor-

ization for Sparse Tensors - Algorithms and Discoveries. In ICDE. 1120–1131.
[28] Namyong Park, Byungsoo Jeon, Jungwoo Lee, and U Kang. 2016. BIGtensor:

Mining Billion-Scale Tensor Made Easy. In CIKM. ACM, 2457–2460.
[29] Anh Huy Phan and Andrzej Cichocki. 2011. PARAFAC algorithms for large-scale

problems. Neurocomputing 74, 11 (2011), 1970–1984.
[30] Florin Schimbinschi, Xuan Vinh Nguyen, James Bailey, Chris Leckie, Hai Vu, and

Rao Kotagiri. 2015. Trac forecasting in complex urban networks: Leveraging
big data and machine learning. In Big Data. IEEE, 1019–1024.

[31] Kijung Shin and U Kang. 2014. Distributed Methods for High-Dimensional and
Large-Scale Tensor Factorization. In ICDM. IEEE Computer Society, 989–994.

[32] Kijung Shin, Lee Sael, and U Kang. 2017. Fully Scalable Methods for Distributed
Tensor Factorization. IEEE Trans. Knowl. Data Eng. 29, 1 (2017), 100–113.

[33] Shaden Smith, Kejun Huang, Nicholas D. Sidiropoulos, and George Karypis. 2018.
Streaming Tensor Factorization for Innite Data Sources. In SDM. SIAM, 81–89.

[34] Shaden Smith, Niranjay Ravindran, Nicholas D. Sidiropoulos, and George Karypis.
2015. SPLATT: Ecient and Parallel Sparse Tensor-Matrix Multiplication. In
IPDPS. IEEE Computer Society, 61–70.

[35] Charalampos E. Tsourakakis. 2010. MACH: Fast Randomized Tensor Decomposi-
tions. In SDM. 689–700.

[36] HongchengWang and Narendra Ahuja. 2008. A Tensor Approximation Approach
to Dimensionality Reduction. Int. J. Comput. Vis. 76, 3 (2008), 217–229.

[37] Yi Wang, Pierre-Marc Jodoin, Fatih Murat Porikli, Janusz Konrad, Yannick
Benezeth, and Prakash Ishwar. 2014. CDnet 2014: An Expanded Change De-
tection Benchmark Dataset. In CVPR Workshops. 393–400.

[38] Fan Yang, Fanhua Shang, Yuzhen Huang, James Cheng, Jinfeng Li, Yunjian Zhao,
and Ruihao Zhao. 2017. LFTF: A Framework for Ecient Tensor Analytics at
Scale. Proc. VLDB Endow. 10, 7 (2017), 745–756.

[39] Shuo Zhou, Xuan Vinh Nguyen, James Bailey, Yunzhe Jia, and Ian Davidson. 2016.
Accelerating Online CP Decompositions for Higher Order Tensors. In SIGKDD.
1375–1384.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

733

https://www.tensortoolbox.org
https://arxiv.org/abs/1612.01840
https://arxiv.org/abs/1612.01840
https://arxiv.org/abs/1612.01840
https://arxiv.org/abs/1511.06530
http://arxiv.org/abs/1511.06530

APPENDIX

A TUCKER-ALS

Algorithm 3: Tucker-ALS (HOOI) [17, 20]

Input: tensor X ∈ RI1×. . .×IN and dimensionalities J1, ..., JN of core
tensor

Output: core tensor G ∈ RJ1 , . . ., JN and factor matrices A(n) ∈ RIn×Jn
(n = 1, ..., N)

1: initialize: factor matrices A(n) (n = 1, ..., N)
2: repeat

3: for n = 1, ..., N do

4: Y← X ×1 A(1)T · · · ×n−1 A(n−1)T ×n+1 A(n+1)T · · · ×N A(N)T

5: A(n) ← Jn leading left singular vectors of Y(n)
6: end for

7: until convergence criterion is met;
8: G← X ×1 A(1)T ×2 A(2)T · · · ×N A(N)T

B PROOFS

B.1 Proof of Lemma 1

Proof. After xing all factor matrices except for the n-th factor
matrix, the partial derivative of the Equation (2) with respect to the
factor matrix Ã(n) is as follows:

∂L(n)

∂Ã(n)
= −2X̃(n)(⊗Nk,nÃ

(k))G̃T
(n)+2Ã

(n)G̃(n)
(
⊗Nk,nÃ

(k)T Ã(k)
)
G̃T
(n)

We set ∂L(n)
∂Ã(n)

to zero, and solve the equation with respect to the
factor matrix Ã(n):

Ã(n)
(
G̃(n)

(
⊗Nk,nÃ

(k)T Ã(k)
)
G̃T
(n)

)
= X̃(n)

(
⊗Nk,nÃ

(k)
)
G̃T
(n)

⇔ Ã(n) = X̃(n)
(
⊗Nk,nÃ

(k)
)
G̃T
(n)

(
C(n)

)−1
�

B.2 Proof of Lemma 2

Proof. A naive approach computing Equation (4) is to explic-
itly compute the entire Kronecker product

(
⊗Nk,nU

(k)TV(k)
)
of the

size JN−1 × JN−1. We compute matrix multiplication between the
preceding result S(n) and S′(n). Therefore, the time and space com-
plexities areO(NI J2+ J2N + JN+1) andO(J2N +NI J), respectively.

We compute Equation (4) using n-mode product instead of Kro-
necker product. Let Z(n) = S(n)

(
⊗Nk,nU

(k)TV(k)
)
be equal to

I(n)S(n)
(
⊗Nk,nU

(k)TV(k)
)
where I(n) ∈ RJ×J is an identity matrix.

Then, we transform Z into Equation (9) using Equation (1).

Z = S ×1 (U(1)TV(1))T · · · ×n−1 (U(n−1)TV(n−1))T

×n I(n) ×n+1 (U(n+1)TV(n+1))T · · · ×N (U(N)TV(N))T
(9)

Based on Equation (9), we compute Equation (4) in the following
order: 1) U(k)TV(k) for k = 1, ...,n − 1,n + 1, ...,N , 2) Z(n), and 3)
Z(n)S′

T
(n). Therefore, the computational cost is O(NI J2 + N JN+1).

In addition, the size of intermediate data is always no larger than
JN so that the space complexity is O(JN + NI J). �

B.3 Proof of Lemma 3

Proof. FromEquation (3), we carefully decouple X̃(n)
(
⊗Nk,nÃ

(k)
)

block by block so that we represent the term as a summation of
block matrices:

Ã(n) =
[
X<S>
(n) · · ·X

<E>
(n)

] ©«

Ã(N)[S]
...

Ã(N)[E]

 ⊗
(
⊗N−1k,n Ã

(k)
)ª®®®¬ G̃

T
(n)

(
C(n)

)−1
=

(E∑
i=S

X<i>
(n)

(
Ã(N)[i] ⊗

(
⊗N−1k,n Ã

(k)
)))

G̃T
(n)

(
C(n)

)−1
Next, we express i-th blockmatrixX<i>

(n) as the result (A<i>)(n)G<i>
(n)(

(A<i>)(N)T ⊗
(
⊗N−1k,n (A

<i>)(k)T
))

obtained in the preprocessing
step.

Ã(n)

=

E∑
i=S
(A<i>)(n)G<i>

(n)

(
(A<i>)(N)T Ã(N)[i] ⊗

(
⊗N−1k,n (A

<i>)(k)T Ã(k)
))

× G̃T
(n)

(
C(n)

)−1
=

(E∑
i=S
(A<i>)(n)(B<i>)(n)

(
C(n)

)−1)
Note that Ã(N)[i] is described in Lemma 4. �

B.4 Proof of Lemma 4

Proof. From Equation (3), we decouple X̃(N) for updating N -th
factor matrix. We rst re-express X̃(N)

(
⊗N−1k=1 Ã

(k)
)
using temporal

block tensors X<i> for i = S, .., E as follows:

X̃(N)
(
⊗N−1k=1 Ã

(k)
)
=

X<S>
(N)

(
⊗N−1k=1 Ã

(k)
)

...

X<E>
(N)

(
⊗N−1k=1 Ã

(k)
)

Then, we replace X<i>
(N) with the tucker results obtained at the

preprocessing phase.

X̃(N)
(
⊗N−1k=1 Ã

(k)
)
≈

(A<S>)(N)G<S>

(N)

(
⊗N−1k=1 (A

<S>)(k)T Ã(k)
)

...

(A<E>)(N)G<E>
(N)

(
⊗N−1k=1 (A

<E>)(k)T Ã(k)
)

(10)
Next, we obtain the following equation by inserting the right term
of the above equation into Equation (3):

Ã(N) =

(A<S>)(N)G<S>

(N)

(
⊗N−1k=1 (A

<S>)(k)T Ã(k)
)
G̃T
(N)

...

(A<E>)(N)G<E>
(N)

(
⊗N−1k=1 (A

<E>)(k)T Ã(k)
)
G̃T
(N)

(
C(N)

)−1

=

(A<S>)(N)(B<S>)(N)

...

(A<E>)(N)(B<E>)(N)

(
C(N)

)−1
(A<S>)(N) and (A<E>)(N) are adjusted to t to a range [ts , te]. �

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

734

B.5 Proof of Theorem 1

Proof. We split a tensorX into B temporal block tensorsX<i> ,
and then perform Tucker decomposition of X<i> for i = 1, ...,B.
Since we use Tucker-ALS in the preprocessing phase, the time
complexity for each temporal block tensorX<i> isO(MNIN−1 Jb).
Therefore, the preprocessing phase takesO(MNIN−1 JbB) time. �

B.6 Proof of Theorem 2

Proof. The time complexity of the query phase depends on up-
dating factor matrices and core tensor. Updating a factor matrix or
core tensor takes O

(
J2l[ts ,te]

(
1 + N I

b +
N JN−1

b

))
time. Therefore,

the total time complexity is O
(
MN J2l[ts ,te]

(
1 + N I

b +
N JN−1

b

))
which contains the time complexity of updating factor matrices
and core tensor, the number of iterations, and the number of factor
matrices. �

B.7 Proof of Theorem 3

Proof. For the mode-N , summing up the size of the factor ma-
trices of the time dimension is equal to IN J . For each mode n , N ,
there are B factor matrices, for the n-th mode, of size O(I J) where
B = IN

b is the number of blocks. Then, the space complexity is
O(NI J (d INb e) + IN J). �

B.8 Proof of Theorem 4

Proof. Given a time range [ts , te], summing up the size of the
factor matrices of the time dimension is equal to l[ts ,te] × J ; the

size of the factor matrix of a non-temporal mode is I × J , and the
number of block is equal to d l[ts ,te]b e or (d l[ts ,te]b e) + 1. The size
of the block results used in the query phase is O(NI J (d

l[ts ,te]
b e) +

l[ts ,te] J). By carefully stitching the block results, intermediate data
are always smaller than the block results. Therefore, the space cost
of Zoom-Tucker is O

(
NI J (d

l[ts ,te]
b e) + Jl[ts ,te]

)
for a given time

range [ts , te]. �

C PARAMETERS SETTINGS

We use the following parameters.
(1) Number of threads: we use a single thread.
(2) Max number of iterations: the maximum number of iter-

ations is set to 100.
(3) Rank: we set the dimensionality Jn of each mode of core

tensor to 10.
(4) Choosing a time range query:we randomly choose a start

time ts of a time range, and compute te = ts + l[ts ,te] − 1
where l[ts ,te] is the length of the time range; we choose
l[ts ,te] among the sets described in Table 3.

(5) Block size b: we set b to 50 except in Section 4.4.
(6) Tolerance: the iteration stops when the variation of the

error

√
‖X‖2F−‖G‖

2
F

‖X‖F
[17] is less than ϵ = 10−4.

Other parameters for competitors are set to the values proposed in
each paper. To compare the running time, we run each method 5
times, and report the average.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

735

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Tensor and Its Operation
	2.2 Tucker Decomposition
	2.3 Problem Definition

	3 Proposed Method
	3.1 Preprocessing Phase
	3.2 Query Phase
	3.3 Analysis

	4 Experiment
	4.1 Experimental Settings
	4.2 Trade-off between Query Time and Reconstruction Error (Q1)
	4.3 Space Cost (Q2)
	4.4 Effects of Block Size b (Q3)
	4.5 Discovery (Q4)

	5 Related Work
	6 Conclusions
	Acknowledgments
	References
	A Tucker-ALS
	B Proofs
	B.1 Proof of Lemma 1
	B.2 Proof of Lemma 2
	B.3 Proof of Lemma 3
	B.4 Proof of Lemma 4
	B.5 Proof of Theorem 1
	B.6 Proof of Theorem 2
	B.7 Proof of Theorem 3
	B.8 Proof of Theorem 4

	C Parameters Settings

