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n Q. Given a temporal dense tensor and a time range 
(e.g., January -March 2019), how can we efficiently 
analyze the tensor in the given time range?

n A. Zoom-Tucker enables us to analyze the tensor in 
the given range, quickly and memory-efficiently

2

Overview
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Outline

■ Introduction
■ Proposed Method
■ Experiments
■ Conclusion
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n Several real-world data are represented as temporal
dense tensors
q One dimension corresponds to time
q Most entries of a tensor are measured

4

Stocks
3-way tensor

Index: (stock, feature, time)
Value: measurement

Temporal Dense Tensors

Video
3-way tensor

Index: (width, height, time)
Value: measurement

Traffic Volume
3-way tensor

Index: (sensor, frequency, time)
Value: measurement
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Tucker Decomposition

■ Given an 𝑁-order tensor 𝓧 ∈ ℝ!!×⋯×!" , rank 𝐽$, … , 𝐽%
■ Obtain factor matrices 𝐀(') ∈ ℝ!#×) for 𝑛 = 1,… ,𝑁 and core 

tensor 𝓖 ∈ ℝ)!×⋯×)"

■ Objective function

min
𝓖, 𝐀 $

$%!
"

𝐗(') − 𝐀 ' 𝐆(') ⊗-.'
% 𝐀(-)/

0
1

■ ALS (Alternating Least Square) approach
❑ Iteratively updates a factor matrix of a mode while fixing all factor 

matrices of other modes

𝐀(𝟏)

𝓖

𝐀(𝟑)

𝐀(𝟐)≈

3-order tensor ⊗: Kronecker product
⊗!"#

$ 𝐀(!)' : the entire Kronecker 
product of 𝐀(!)' in descending order for 
𝑘 = 𝑁,… , 𝑛 + 1, 𝑛 − 1,… , 1
𝐗(#): mode-𝑛 matricization of 𝓧
𝐆(#): mode-𝑛 matricization of 𝓖
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Applications

■ Several applications for Tucker decomposition
❑ Dimensionality reduction, concept discovery, trend analysis, 

anomaly detection, and clustering

Clustering
Find similar objects using latent 

factors

Sensor type 1,3,4,7

Sensor type 2,5,6

Dimensionality Reduction
Lossy compression for a 
temporal dense tensor

10GB 100MB

𝒳

𝑰𝟏

𝑰𝟐

𝑰𝟑

𝐀(+)
𝐀(,)

𝐀(-)

𝐆≈

Trend Analysis
Find main trends using latent 
factors of the time dimension

- Main trend 1
- Main trend 2
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Time Range Query

■ Several users are interested in investigating patterns of 
diverse time ranges using Tucker decomposition

Find similar 
stocks in 

COVID-19

Compare 
monthly

patterns in a 
stock market 

⋮
Analyze patterns 

for the entire 
time range

Q. How can we answer diverse 
time range queries quickly and 
memory-efficiently?

⋮
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Problem Definition

Problem: time range query problem on temporal 
dense tensor
■ Given

❑ A temporal dense tensor 𝓧 ∈ ℝ&2×⋯×&342×&3
■ Assume the last dimension is the time dimension

❑ A time range query 𝑡), 𝑡*
■ Find

❑ The Tucker results of the sub-tensor of 𝓧 included in the 
given range 𝑡), 𝑡*
■ The Tucker results include factor matrices !𝐀(𝟏), … , !𝐀(𝑵), and core 

tensor !𝓖
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Challenges

■ (Limitation) Previous works are tailored for performing 
Tucker decomposition of only the whole tensor once

❑ For each time range, performing Tucker decomposition from 
scratch requires high time and space costs

❑ A few methods with a preprocessing phase are still 
unsatisfactory in terms of time, space, and accuracy on the 
problem
■ Before time range is given, they preprocess a given tensor, and perform Tucker 

decomposition with the preprocessed tensor for each time range query

■ Need to address the following challenges 
1. Deal with diverse time ranges
2. Minimize computational costs
3. Avoid huge intermediate data
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Proposed Method - Overview

■ We propose Zoom-Tucker (Zoomable Tucker 
decomposition)
❑ A fast and memory-efficient Tucker decomposition 

method for diverse time range queries

■ Zoom-Tucker consists of the two phases
❑ Preprocessing phase

■ Compresses a given temporal tensor block by block before 
time range queries are given

❑ Query phase
■ Answers a given time range query by exploiting 

compression results obtained in the preprocessing phase
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Preprocessing Phase 

■ Before time range queries are given, Zoom-Tucker compresses 
a given temporal tensor block by block along the time 
dimension

❑ Split a given temporal tensor into sub-tensors along the time dimension 
❑ For each block tensor, we perform Tucker decomposition

■ The advantages of the preprocessing phase
1. Generate small results compared to an input tensor (support high efficiency of the query 

phase)
2. Capture local temporal information (reduce error increase)

𝓧./0: 𝑖-th block tensor
𝐀./0 #

: the 𝑛-th factor 
matrix of 𝑖-th block tensor
𝓖./0: the core tensor of 𝑖-
th block tensor

Block size
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Query Phase

■ Goal
❑ Given a time range query, efficiently perform Tucker 

decomposition of the sub-tensor included in the time range

■ A naïve approach would reconstruct the preprocessed results in a 
given range, and then compute Tucker decomposition

❑ Unsatisfactory in terms of time and space costs
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= !𝐗 % ⊗&'%
( !𝐀(&) !𝐆(%)) 𝐂 % *+

Query Phase

■ Optimization problem

■ Procedure
1. Given a time range 𝑡,, 𝑡- , load Tucker results included in the time 

range
2. Adjust the first and the last blocks to fit the range
3. Alternatively update factor matrices and core tensor using the 

Tucker results
4. Repeatedly performs step 3 until convergence

■ Update rule

min
.𝓖, .𝐀 !

!"#
$

!𝐗 % − !𝐀 % !𝐆 2 ⊗&'%
( !𝐀(&)) 3

4

6𝐗 # : the mode-𝑛
matricized version of a sub-
tensor for a time range
6𝐀 # : the 𝑛-th factor matrix
6𝐆 1 : the core tensor

!𝐀(%) ← !𝐗 % ⊗&'%
( !𝐀(&) !𝐆(%)) !𝐆(%) ⊗&'%

( !𝐀(&))!𝐀(&) !𝐆(%)) *+

Efficiently compute this term

!!"# (%) !!
"" + 1
⋮

"# − 1!$

"" − 1

⋮
"# + 1

Out of 
range

Out of 
range

⋮!!"# (%)

!!'# (%)
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Main Ideas

■ Main ideas for the efficient query phase
1. In our update rule, replace a sub-tensor !𝓧 of a time range query 

with preprocessed block Tucker results
2. Decouple block Tucker results in a time range query, obtained in 

the preprocessing phase
3. Carefully determining the order of computations

■ Exploit the following key techniques

𝐀& 𝐁& 𝐂
𝐃 = 𝐀&𝐂 + 𝐁&𝐃

Matrix multiplication of 
block matrices

𝐄& ⊗𝐅& 𝐆⊗𝐇 = 𝐄&𝐆⊗ 𝐅&𝐇

The mixed product property

⊗ ⊗⊗ =

■ With the above two techniques, we significantly reduce the 
intermediate data and computational costs for a given query 

Contain

Contain
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Non-temporal Mode

■ By exploiting the two techniques, we decouple block results 
along the time dimension

■ Compute each block and then sum up the results

■ In 𝐁567 (%) ∈ ℝ8×8 and 𝐂 % ∈ ℝ8×8, there are the following 
computations (low time and space costs)

❑ 𝐔)𝐕 ∈ ℝ8×8 𝐔, 𝐕 ∈ ℝ:×8

❑ 𝑛-mode products between a core tensor and 𝐔)𝐕
❑ Matrix multiplication between mode-𝑛 matricization of two core 

tensors

!𝐀(%) ←8
6;<

=

𝐀567
(%)

𝐁567
(%)

𝐂 % *+

Using matrix multiplication 
of block matrices

Efficiently compute it using 
the mixed product property
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Temporal Mode & Core Tensor

■ Decouple block results along the time dimension
■ Compute each block

■ 𝐁678 (9) ∈ ℝ:×: and 𝐂 9 ∈ ℝ:×: are also computed with 
low computational costs 

■ At the end of each iteration, the core tensor is also updated 
by exploiting the main ideas

!𝐀(() ←
𝐀5<7 (() 𝐁5<7 (()

⋮
𝐀5=7 (() 𝐁5=7 (()

𝐂 ( *+

With the main ideas, the dominant cost to update a factor matrix is 
mainly proportional to the size 𝑰 of dimension and the number 𝑩 of 
blocks ⇒ fast and memory-efficient
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Experimental Questions

■ Answer the following questions:
❑ Q1. Performance trade-off. Does Zoom-Tucker provide 

the best trade-off between query time and reconstruction 
error?

❑ Q2. Space cost. What is the space cost of Zoom-Tucker 
and competitors for preprocessed results?

❑ Q3. Effects of the block size 𝒃. How does a block size 𝑏
affect query time and reconstruction error of Zoom-
Tucker?

❑ Q4. Discovery. What pattern does Zoom-Tucker discover 
in different time ranges?
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Real-world Datasets

■ Use 6 real-world datasets

■ The last dimension is the time dimension
■ Length of time range

❑ For each dataset, we use two kinds of time range 
queries: narrow and wide time ranges 
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Experimental Setting

■ Machine
❑ A workstation with a single CPU (Intel Xeon E5-2630 v4 @ 2.2GHz), 

and 512GB memory
■ Target Rank

❑ 10
■ Block size 𝑏

❑ 50
■ Reconstruction error

𝓧− $𝓧
𝑭

𝟐

| 𝓧| 𝑭𝟐
❑ 𝓧 is an input tensor
❑ =𝓧 is the tensor reconstructed from factor matrices and core tensor
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Competitor

■ Compare Zoom-Tucker with the following Tucker 
decomposition approaches
❑ D-Tucker

■ A SVD based Tucker decomposition method
❑ Tucker-ts and Tucker-ttmts

■ A sketching based Tucker decomposition method
❑ MACH

■ A sampling based Tucker decomposition method
❑ Tucker-ALS

■ An implementation of ALS algorithm in Tensor Toolbox
❑ RTD

■ A Tucker decomposition method with a randomized algorithm
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Q1. Performance Trade-off

■ The lower-left region indicates better performance0 1000 2000 3000 4000 5000
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Zoom-Tucker outperforms the competitors based on Tucker-ALS for both 
narrow and wide time ranges while having comparable errors

Video, Stock, Absorb 
dataset

Video, Stock, Absorb 
dataset
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Q2. Space Cost

■ Compare space cost for storing preprocessed results

❑ Input Tensor corresponds to the space cost of Tucker-ALS, 
Tuckerts, Tucker-ttmts, and RTD

■ Zoom-Tucker requires up to 𝟐𝟑𝟎× less space than 
competitors
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■ Measure the running time and error with respect to block 
size 𝑏

Q3. Effect of block size

■ Narrow time range queries
❑ Trade-off relationships

■ 𝑏 ↑
❑ Running time ↓
❑ Error ↑

■ Wide time range queries
❑ The running time is 

inversely proportional to 𝑏
❑ The reconstruction error is 

not sensitive to 𝑏
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Q4. Discovery

■ Given a Korean stock dataset in the form of (stock, features, time), 
analyze the trend change by comparing results of two time range 
queries

❑ Analyze the change of yearly trend of Samsung Electronics in the years 
2013 (Query 1) and 2018 (Query 2)

1. Perform Zoom-Tucker for the two time range queries and get 
the factor matrix 7𝐀($) each of whose rows contain the latent 
features of a stock

2. Manually pick 33 smartphone-related stocks and 46 
semiconductor-related stocks

3. For each query, compare the cosine distance between the latent 
feature vectors of each stock and Samsung Electronics
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Q4. Discovery

■ Analyze trend change by comparing results of the two time range 
queries

■ A clear change of the distances between 2013 and 2018
❑ Samsung Electronics is more close to smartphone-related stocks in 2013
❑ but to semiconductor-related stocks in 2018

■ This result exactly reflects the sales trend of Samsung Electronics
❑ In 2013, the annual sales of its smartphone division ↑
❑ In 2018, those of its semiconductor division ↑

Zoom-Tucker enables us to efficiently explore diverse time ranges
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Outline
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Conclusion

■ Zoom-Tucker answers diverse time range queries on 
a dense temporal tensor quickly and memory-
efficiently
❑ Compress a given temporal tensor block by block along 

the time dimension
❑ Perform Tucker decomposition by elaborately using 

compression results, every time a time range is given
■ Zoom-Tucker outperforms the previous Tucker 

decomposition methods based on ALS
■ Zoom-Tucker provides opportunities to extract 

unknown and interesting patterns in diverse time 
ranges
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Thank you !
https://datalab.snu.ac.kr/zoomtucker

https://datalab.snu.ac.kr/zoomtucker

