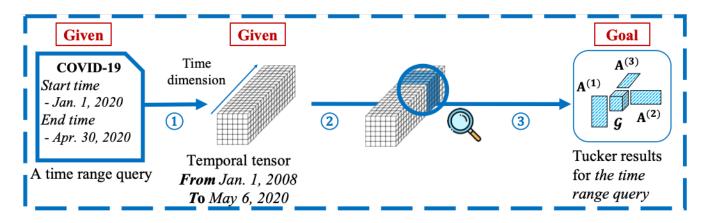


Fast and Memory-Efficient Tucker Decomposition for Answering Diverse Time Range Queries

Jun-Gi Jang and U Kang Data Mining Lab Dept. of CSE Seoul National University

Jun-Gi Jang and U Kang (SNU)

- Q. Given a temporal dense tensor and a time range (e.g., January -March 2019), how can we efficiently analyze the tensor in the given time range?
- A. Zoom-Tucker enables us to analyze the tensor in the given range, quickly and memory-efficiently

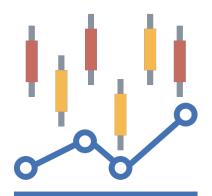


Introduction

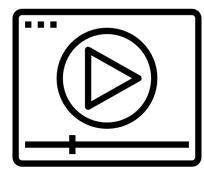
- Proposed Method
- Experiments
- Conclusion

Temporal Dense Tensors

- Several real-world data are represented as temporal dense tensors
 - One dimension corresponds to time
 - Most entries of a tensor are measured



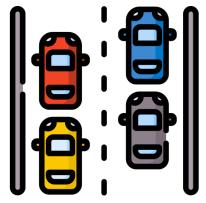
Stocks 3-way tensor Index: (stock, feature, time) Value: measurement



Video

3-way tensor Index: (width, height, time) Value: measurement

Jun-Gi Jang and U Kang (SNU)



Traffic Volume

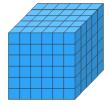
3-way tensor Index: (sensor, frequency, time) Value: measurement

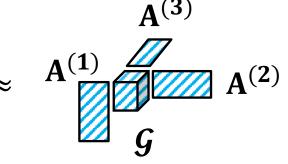
Tucker Decomposition

- Given an *N*-order tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$, rank J_1, \dots, J_N
- **Obtain** factor matrices $\mathbf{A}^{(n)} \in \mathbb{R}^{I_n \times J}$ for n = 1, ..., N and core tensor $\mathbf{G} \in \mathbb{R}^{J_1 \times \cdots \times J_N}$
- Objective function

$$\min_{\mathcal{G},\left\{\mathbf{A}^{(k)}\right\}_{k=1}^{N}} \left\| \mathbf{X}_{(n)} - \mathbf{A}^{(n)} \mathbf{G}_{(n)} \left(\bigotimes_{k \neq n}^{N} \mathbf{A}^{(k)T} \right) \right\|_{F}^{2}$$

3-order tensor



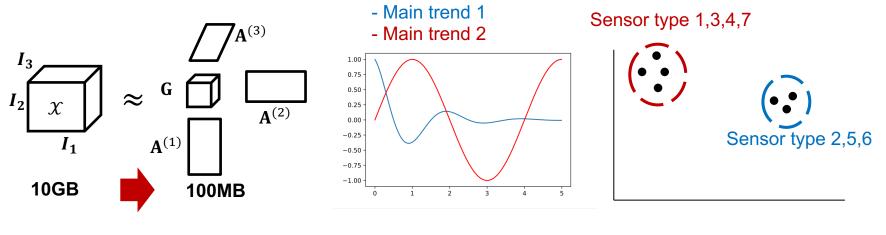


 \otimes : Kronecker product $\left(\bigotimes_{k\neq n}^{N} \mathbf{A}^{(k)T}\right)$: the entire Kronecker product of $\mathbf{A}^{(k)T}$ in descending order for k = N, ..., n + 1, n - 1, ..., 1 $\mathbf{X}_{(n)}$: mode-*n* matricization of $\boldsymbol{\mathcal{X}}$ $\mathbf{G}_{(n)}$: mode-*n* matricization of $\boldsymbol{\mathcal{G}}$

- ALS (Alternating Least Square) approach
 - Iteratively updates a factor matrix of a mode while fixing all factor matrices of other modes

Several applications for Tucker decomposition

 Dimensionality reduction, concept discovery, trend analysis, anomaly detection, and clustering



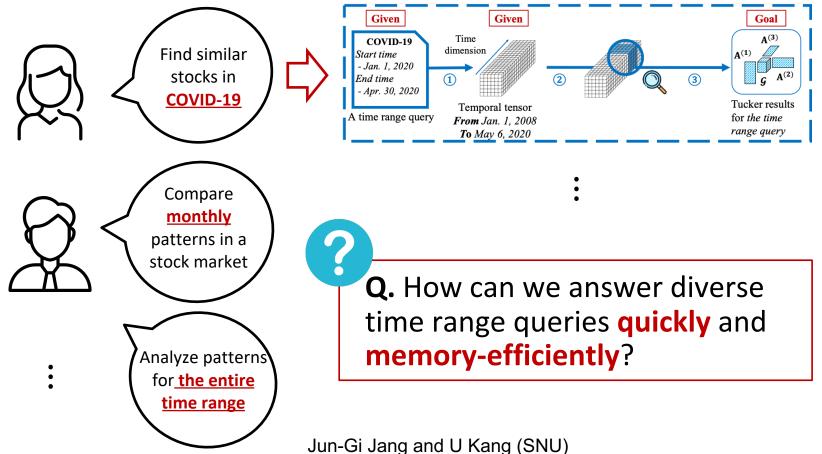
Dimensionality Reduction

Lossy compression for a temporal dense tensor

Trend Analysis Find main trends using latent factors of the time dimension **Clustering** Find similar objects using latent factors

Time Range Query

 Several users are interested in investigating patterns of diverse time ranges using Tucker decomposition



Problem Definition

Problem: time range query problem on temporal dense tensor

Given

□ A temporal dense tensor $\boldsymbol{X} \in \mathbb{R}^{I_1 \times \cdots \times I_{N-1} \times I_N}$

Assume the last dimension is the time dimension

 \Box A time range query $[t_s, t_e]$

Find

- □ The Tucker results of the sub-tensor of X included in the given range [t_s, t_e]
 - The Tucker results include factor matrices $\widetilde{A}^{(1)}$, ..., $\widetilde{A}^{(N)}$, and core tensor \widetilde{G}

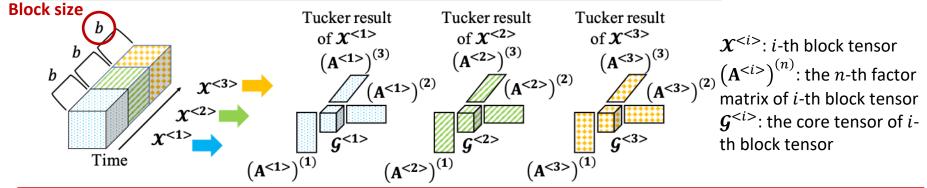
- (Limitation) Previous works are tailored for performing Tucker decomposition of only the whole tensor once
 - For each time range, performing Tucker decomposition from scratch requires high time and space costs
 - A few methods with a preprocessing phase are still unsatisfactory in terms of time, space, and accuracy on the problem
 - Before time range is given, they preprocess a given tensor, and perform Tucker decomposition with the preprocessed tensor for each time range query
- Need to address the following challenges
 - 1. Deal with diverse time ranges
 - 2. Minimize computational costs
 - 3. Avoid huge intermediate data

- Introduction
- Proposed Method
 - Experiments
 - Conclusion

- We propose Zoom-Tucker (Zoomable Tucker decomposition)
 - A fast and memory-efficient Tucker decomposition method for diverse time range queries
- Zoom-Tucker consists of the two phases
 - Preprocessing phase
 - Compresses a given temporal tensor block by block before time range queries are given
 - Query phase
 - Answers a given time range query by exploiting compression results obtained in the preprocessing phase

Preprocessing Phase

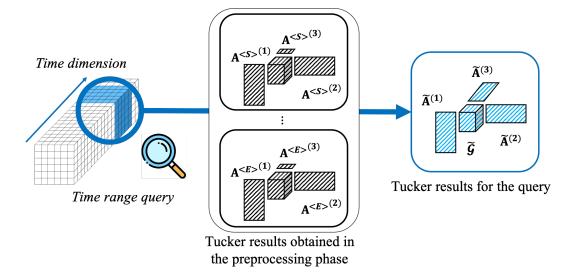
- Before time range queries are given, Zoom-Tucker compresses a given temporal tensor block by block along the time dimension
 - Split a given temporal tensor into sub-tensors along the time dimension
 - For each block tensor, we perform Tucker decomposition



- The advantages of the preprocessing phase
 - 1. Generate **small results** compared to an input tensor (support high efficiency of the query phase)
 - 2. Capture local temporal information (reduce error increase)

Goal

 Given a time range query, efficiently perform Tucker decomposition of the sub-tensor included in the time range



- A naïve approach would reconstruct the preprocessed results in a given range, and then compute Tucker decomposition
 - Unsatisfactory in terms of time and space costs

 $\left(\mathbf{A}^{<i>}\right)^{(N)}$

 $({\bf A}^{< E>})^{(N)}$

 $\mathbf{X}_{(n)}$: the mode-nmatricized version of a subtensor for a time range $\mathbf{\widetilde{A}}^{(n)}$: the n-th factor matrix $\mathbf{\widetilde{G}}_{(n)}$: the core tensor

Query Phase

Optimization problem

$\min_{\widetilde{\boldsymbol{G}}, \{\widetilde{\mathbf{A}}^{(k)}\}_{k=1}^{N}} \left\| \widetilde{\mathbf{X}}_{(n)} - \widetilde{\mathbf{A}}^{(n)} \widetilde{\mathbf{G}}_{(n)} \left(\bigotimes_{k \neq n}^{N} \widetilde{\mathbf{A}}^{(k)T} \right) \right\|_{F}^{2}$

- 1. Given a time range $[t_s, t_e]$, load Tucker results included in the time range
- 2. Adjust the first and the last blocks to fit the range
- 3. Alternatively update factor matrices and core tensor using the Tucker results
- 4. Repeatedly performs step 3 until convergence

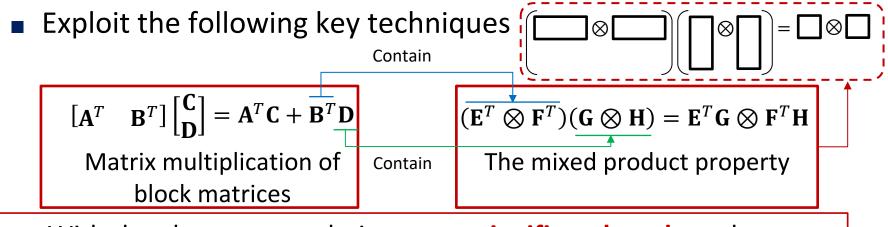
Update rule

$$\widetilde{\mathbf{A}}^{(n)} \leftarrow \widetilde{\mathbf{X}}_{(n)} \left(\bigotimes_{k \neq n}^{N} \widetilde{\mathbf{A}}^{(k)} \right) \widetilde{\mathbf{G}}_{(n)}^{T} \left(\widetilde{\mathbf{G}}_{(n)} \left(\bigotimes_{k \neq n}^{N} \widetilde{\mathbf{A}}^{(k)T} \widetilde{\mathbf{A}}^{(k)} \right) \widetilde{\mathbf{G}}_{(n)}^{T} \right)^{-1} \\ = \widetilde{\mathbf{X}}_{(n)} \left(\bigotimes_{k \neq n}^{N} \widetilde{\mathbf{A}}^{(k)} \right) \widetilde{\mathbf{G}}_{(n)}^{T} \left(\mathbf{C}^{(n)} \right)^{-1}$$

Efficiently compute this term

Jun-Gi Jang and U Kang (SNU)

- Main ideas for the efficient query phase
 - 1. In our update rule, replace a sub-tensor \widetilde{X} of a time range query with **preprocessed block Tucker results**
 - 2. Decouple block Tucker results in a time range query, obtained in the preprocessing phase
 - 3. Carefully determining the **order** of computations



 With the above two techniques, we significantly reduce the intermediate data and computational costs for a given query

Non-temporal Mode

 By exploiting the two techniques, we decouple block results along the time dimension

 $\widetilde{\mathbf{A}}^{(n)} \leftarrow \sum_{i=s}^{L} \left(\mathbf{A}^{\langle i \rangle} \right)^{(n)} \left(\mathbf{B}^{\langle i \rangle} \right)^{(n)} \left(\mathbf{C}^{(n)} \right)^{-1}$

Compute each block and then sum up the results

Efficiently compute it using the mixed product property

- In $(\mathbf{B}^{\langle i \rangle})^{(n)} \in \mathbb{R}^{J \times J}$ and $\mathbf{C}^{(n)} \in \mathbb{R}^{J \times J}$, there are the following computations (low time and space costs)
 - $\mathbf{U}^{T}\mathbf{V} \in \mathbb{R}^{J \times J} (\mathbf{U}, \mathbf{V} \in \mathbb{R}^{I \times J})$

Using matrix multiplication of block matrices

- *n*-mode products between a core tensor and $\mathbf{U}^T \mathbf{V}$
- Matrix multiplication between mode-*n* matricization of two core tensors

- Decouple block results along the time dimension
- Compute each block

$$\widetilde{\mathbf{A}}^{(N)} \leftarrow \begin{bmatrix} (\mathbf{A}^{\langle S \rangle})^{(N)} (\mathbf{B}^{\langle S \rangle})^{(N)} \\ \vdots \\ (\mathbf{A}^{\langle E \rangle})^{(N)} (\mathbf{B}^{\langle E \rangle})^{(N)} \end{bmatrix} (\mathbf{C}^{(N)})^{-1}$$

- $(\mathbf{B}^{\langle i \rangle})^{(N)} \in \mathbb{R}^{J \times J}$ and $\mathbf{C}^{(N)} \in \mathbb{R}^{J \times J}$ are also computed with low computational costs
- At the end of each iteration, the core tensor is also updated by exploiting the main ideas

With the main ideas, the dominant cost to update a factor matrix is mainly proportional to the size I of dimension and the number B of blocks \Rightarrow fast and memory-efficient

- Introduction
- Proposed Method
- **Experiments**
 - Conclusion

Experimental Questions

Answer the following questions:

- Q1. Performance trade-off. Does Zoom-Tucker provide the best trade-off between query time and reconstruction error?
- Q2. Space cost. What is the space cost of Zoom-Tucker and competitors for preprocessed results?
- Q3. Effects of the block size b. How does a block size b affect query time and reconstruction error of Zoom-Tucker?
- Q4. Discovery. What pattern does Zoom-Tucker discover in different time ranges?

Real-world Datasets

Use 6 real-world datasets

Dataset	Dimensionality	Length $l_{[t_s, t_e]}$ of Time Range	Summary
Boats ¹ [37]	$320 \times 240 \times 7000$	(128, 2048)	Video
Walking Video [25]	$1080 \times 1980 \times 2400$	(128, 2048)	Video
Stock ³	$3028 \times 54 \times 3050$	(128, 2048)	Time series
Traffic ⁴ [30]	$1084 \times 96 \times 2000$	(64, 1024)	Traffic volume
FMA ⁵ [8]	$7994 \times 1025 \times 700$	(32, 512)	Music
Absorb ⁶	$192\times288\times30\times1200$	(64, 1024)	Climate

- The last dimension is the time dimension
- Length of time range
 - For each dataset, we use two kinds of time range queries: narrow and wide time ranges

Experimental Setting

- Machine
 - A workstation with a single CPU (Intel Xeon E5-2630 v4 @ 2.2GHz), and 512GB memory
- Target Rank
 - **10**
- Block size *b*
 - **50**
- Reconstruction error

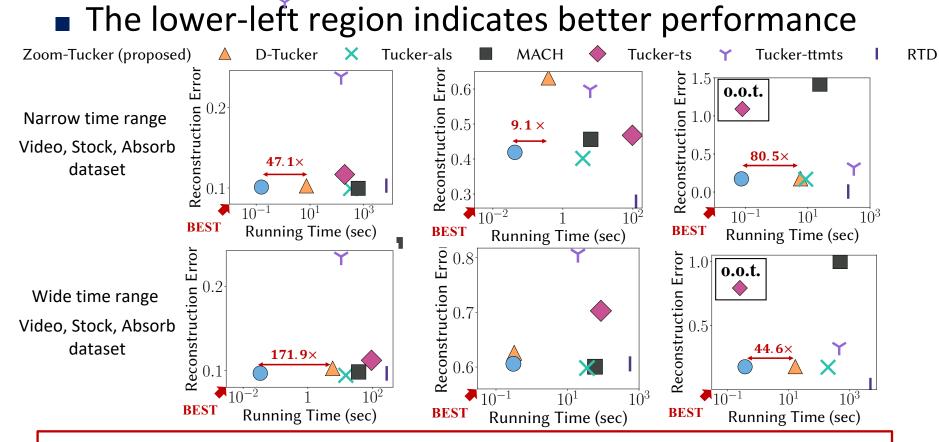
$$\frac{\left|\left|\mathcal{X}-\widehat{\mathcal{X}}\right|\right|_{F}^{2}}{||\mathcal{X}||_{F}^{2}}$$

- $\boldsymbol{\mathcal{X}}$ is an input tensor
- $\widehat{oldsymbol{\mathcal{X}}}$ is the tensor reconstructed from factor matrices and core tensor

Competitor

- Compare Zoom-Tucker with the following Tucker decomposition approaches
 - D-Tucker
 - A SVD based Tucker decomposition method
 - Tucker-ts and Tucker-ttmts
 - A sketching based Tucker decomposition method
 - MACH
 - A sampling based Tucker decomposition method
 - Tucker-ALS
 - An implementation of ALS algorithm in Tensor Toolbox
 - RTD
 - A Tucker decomposition method with a randomized algorithm

Q1. Performance Trade-off



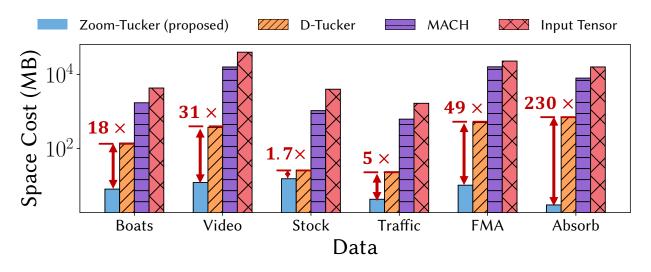
Zoom-Tucker **outperforms** the competitors based on Tucker-ALS for both narrow and wide time ranges while having comparable errors

Jun-Gi Jang and U Kang (SNU)

 \bigcirc

Q2. Space Cost

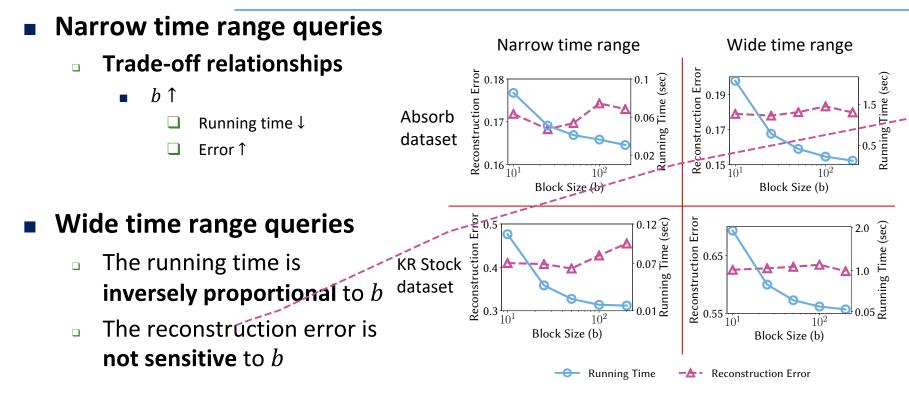
Compare space cost for storing preprocessed results



- Input Tensor corresponds to the space cost of Tucker-ALS, Tuckerts, Tucker-ttmts, and RTD
- Zoom-Tucker requires up to 230× less space than competitors

Q3. Effect of block size

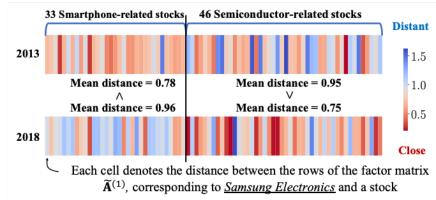
 Measure the running time and error with respect to block size b



- Given a Korean stock dataset in the form of (stock, features, time), analyze the trend change by comparing results of two time range queries
 - Analyze the change of yearly trend of *Samsung Electronics* in the years
 2013 (Query 1) and 2018 (Query 2)
- 1. Perform Zoom-Tucker for the two time range queries and get the factor matrix $\widetilde{A}^{(1)}$ each of whose rows contain the latent features of a stock
- 2. Manually pick 33 smartphone-related stocks and 46 semiconductor-related stocks
- 3. For each query, compare the cosine distance between the latent feature vectors of each stock and *Samsung Electronics*

queries

Analyze trend change by comparing results of the two time range



- A clear change of the distances between 2013 and 2018
 - Samsung Electronics is more close to smartphone-related stocks in 2013
 - but to semiconductor-related stocks in 2018
- This result exactly reflects the sales trend of Samsung Electronics
 - $_{ o}$ In 2013, the annual sales of its smartphone division \uparrow
 - $_{ ext{ iny order}}$ In 2018, those of its semiconductor division \uparrow

Zoom-Tucker enables us to efficiently explore diverse time ranges

- Introduction
- Proposed Method
- Experiments

Conclusion

- Zoom-Tucker answers diverse time range queries on a dense temporal tensor quickly and memoryefficiently
 - Compress a given temporal tensor block by block along the time dimension
 - Perform Tucker decomposition by elaborately using compression results, every time a time range is given
- Zoom-Tucker outperforms the previous Tucker decomposition methods based on ALS
- Zoom-Tucker provides opportunities to extract unknown and interesting patterns in diverse time ranges

Thank you ! https://datalab.snu.ac.kr/zoomtucker

Jun-Gi Jang and U Kang (SNU)