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n Q. Given an irregular dense tensor, how can we 
efficiently analyze the tensor?
q Irregular tensor: a collection of matrices whose columns 

have the same size and rows have different sizes from 
each other

n A. DPar2, a fast and scalable tensor decomposition 
method, efficiently analyzes the irregular tensor

Overview
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Outline

■ Introduction
■ Proposed Method
■ Experiments
■ Conclusion
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n Several real-world data are represented as irregular
dense tensors
q A collection of matrices whose columns have the same size 

and rows have different sizes from each other

4

Stocks
Index: (time, feature, stock)

Value: measurement

Irregular Dense Tensors

Sensor
Index: (time, location, sensor)

Value: measurement

Sensor type 1,
Sensor type 2

Sensor type 1,
Sensor type 2

Sensor type 1,
Sensor type 2IWV PARAFAC2 DecRmSRViWiRQA giYeQ iUUegXlaU

WeQVRU

PARAFAC2
DecRmSRViWiRQ

An irregular 
dense tensor
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PARAFAC2 Decomposition

■ How can we analyze an irregular dense tensor?
■ PARAFAC2 Decomposition

❑ A fundamental tool to analyze irregular tensors
❑ Recently, it has been re-popularized for analysis of 

electronic health records (EHR) data represented as an 
irregular tensor

IWV PARAFAC2 DecRmSRViWiRQA giYeQ iUUegXlaU
WeQVRU

PARAFAC2
DecRmSRViWiRQ
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PARAFAC2 Decomposition

■ Given an irregular tensor 𝐗! !"#
$ , rank 𝑅

❑ Slice matrix 𝐗! ∈ ℝ"!×$

■ Obtain obtain factor matrices 𝐐! ∈ ℝ%!×', 𝐇 ∈ ℝ%!×',
𝐒! ∈ ℝ'×', 𝐕 ∈ ℝ(×' for 𝑘=1,…,𝐾

■ Objective function

min
𝐐!,𝐇,𝐒!,𝐕

'
!*+

,

𝐗! − 𝐐!𝐇𝐒!𝐕- .
/

IWV PARAFAC2 DecRmSRViWiRQA giYeQ iUUegXlaU
WeQVRU

PARAFAC2
DecRmSRViWiRQ
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Application

■ Several applications for PARAFAC2 decomposition
❑ Dimensionality reduction, anomaly detection, trend 

analysis, and phenotype discovery
❑ For example, given a stock data (time, feature, stock)

Feature analysis Similarity search

Q: MSFT
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Alternating Least Square

■ ALS (Alternating Least Square) is widely used for 
obtaining factor matrices of PARAFAC2 
Decomposition
❑ Iteratively updates a factor matrix of a mode while fixing 

all factor matrices of other modes 
❑ (Heavy computational costs) Require computations with 

a given tensor at each iteration
■ For example, ALS needs to compute 𝐗!𝐕𝐒!𝐇 for all 𝑘 at each 

iteration
❑ Its computational cost is 𝑂 ∑!"#$ 𝐼! 𝐽𝑅 proportional to the size of 

an irregular tensor 

𝐗! ∈ ℝ%!×' 𝐕𝐒!𝐇 ∈ ℝ𝑱×𝑹
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Limitation of Previous Works

■ Limitations of previous works 
❑ They fail to handle an irregular dense tensor, 

efficiently
■ Each iteration requires computations involved with 

an irregular tensor

❑ There remains a need for fully employing 
multicore parallelism

We need to make PARAFAC2 decomposition faster and more 
scalable, to analyze large-scale irregular dense tensors
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Outline

■ Introduction
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Proposed Method

■ We propose DPar2 (Dense PARAFAC2 Decomposition)
❑ A fast and scalable PARAFAC2 decomposition method for irregular 

dense tensors

❑ (Idea 1) Compressing an irregular tensor using randomized SVD 
(Singular Value Decomposition)

❑ (Idea 2) Careful reordering of computations with the compression 
results
■ Exploiting properties of operations and matrices

❑ (Idea 3) Careful distribution of work between threads by 
considering various lengths of matrices
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Compression

■ Compressing an irregular tensor before iterations
❑ The result is much smaller than an input irregular tensor

■ The compression is performed once before iterations, and 
only the compression results are used at iterations
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Compression

■ Compressing an irregular tensor using Randomized SVD
❑ Randomized SVD (Singular Value Decomposition) efficiently 

compresses matrices with low errors
■ It efficiently computes 𝐗 ≈ 𝐔𝐒𝐕"

■ There are two compression stage
❑ Stage 1 - compress each slice matrix using randomized SVD
❑ Stage 2 - further compress the intermediate data from the first stage
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Compression

■ Stage 1 - compress each slice matrix using randomized SVD
❑ For all 𝑘, compute 𝐗! ≈ 𝐀!𝐁!𝐂!-

■ Stage 2 - further compress the intermediate data from the 
first stage

❑ Construct a matrix 𝐌 = ||𝒌*𝟏𝑲 𝐂!𝐁! by horizontally concatenating
𝐂!𝐁!

❑ Then, compute 𝐌 ≈ 𝐃𝐄𝐅-

■ The final output of the compression is 𝐀!𝐅 ! 𝐄𝐃4 ≈ 𝐗!
❑ 𝐀! ∈ ℝ"!×$ and 𝐅(!) ∈ ℝ$×$ are generated from each slice matrix
❑ Only one 𝐄 ∈ ℝ$×$ and 𝐃 ∈ ℝ'×$ are generated across all slice matrices

𝐅 =
𝐅(+)
⋮

𝐅(,)

Due to the two-stage compression, we efficiently obtain the 
compression results much smaller than an input tensor

Details
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Updating Factor Matrices

■ Update factor matrices by exploiting the 
compression results
❑ (Naïve approach) would update factor matrices after 

reconstruction, but it requires high computational costs 
and space costs

■ (Idea) Careful reordering of computations with the 
compression results
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Updating Factor Matrices

Update Procedure 
of DPar2

Input: 𝐀!𝐅 ! 𝐄𝐃-(≈ 𝐗!) for 
𝑘 = 1,… , 𝐾, target rank 𝑅
Output: 𝐐!, 𝐇, 𝐒!, 𝐕 for
𝑘 = 1,… , 𝐾
§ Update 𝐐𝒌
§ Update 𝐇
§ Update 𝐒!
§ Update 𝐕

■ Update 𝐐! using the 
compression results

■ Naïve Computation (High Cost)
❑ Reconstruct slice matrices from the 

compression results
❑ Compute 𝐐! using the 

reconstructed one

■ Our computation (Low Cost)
❑ Improve efficiency by avoiding 

reconstruction and redundant 
computations for 𝐀!
■ Exploit the property of 𝐀! ∈ ℝ"!×'

■ 𝐀! is a column orthogonal matrix, 
i.e., 𝐀!(𝐀! = 𝐈



Jun-Gi Jang (SNU) 17

Update Procedure 
of DPar2

Input: 𝐀!𝐅 ! 𝐄𝐃-(≈ 𝐗!) for 
𝑘 = 1,… , 𝐾, target rank 𝑅
Output: 𝐐!, 𝐇, 𝐒!, 𝐕 for
𝑘 = 1,… , 𝐾
§ Update 𝐐!
§ Update 𝐇
§ Update 𝐒𝒌
§ Update 𝐕

Updating Factor Matrices

■ Update 𝐇, 𝐒𝒌, 𝐕
■ Use small factorized matrices 

e. g., 𝐀!, 𝐅 ! , 𝐄, 𝐃
❑ They are much smaller than an 

input tensor

■ Carefully reordering of 
computations with the 
compression results

With these ideas, we reduce the 
computational costs and avoid 
generating large intermediate data
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Update Procedure 
of DPar2

Input: 𝐀!𝐅 ! 𝐄𝐃-(≈ 𝐗!) for 
𝑘 = 1,… , 𝐾, target rank 𝑅
Output: 𝐐!, 𝐇, 𝐒!, 𝐕 for
𝑘 = 1,… , 𝐾
§ Update 𝐐!
§ Update 𝐇
§ Update 𝐒𝒌
§ Update 𝐕

Updating Factor Matrices

■ Update 𝐇, 𝐒𝒌, 𝐕

Naïve computation with large matrices

Our computation with small matrices

Reduce the costs by 
carefully reordering of 
computations with the 
compression results
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Multi-core Parallelism

■ Given an irregular tensor, the number of rows of 
slice matrices is different

■ For example, stocks have different time lengths due 
to listing periods

■ No method considers this difference for parallelism

• The length of the 
temporal dimension 
of input slices

• We sort the lengths 
in descending order
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Multi-core Parallelism

■ Careful distribution of work between threads by 
considering various lengths of matrices
❑ Computational costs of handling a matrix are proportional to its size

Distribute matrices fairly 
across each thread 
considering their size

Naïve approach - the 
completion time varies

An input irregular 
tensor
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Experimental Questions

■ Q1. (Performance) How quickly and accurately 
does DPar2 perform PARAFAC2 decomposition 
compared to other methods?

■ Q2. (Scalability) How well does DPar2 scale up with 
respect to tensor size and target rank? How much 
does the number of threads affect the running time 
of DPar2?

■ Q3. (Discovery) What can we discover from real-
world tensors using DPar2?
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Dataset

■ Dataset

■ Each slice matrix of an irregular tensor has different 𝐼!
■ 𝐽 is the size of the common axis

❑ The column size of slice matrices
■ 𝐾 is the number of slice matrices in an irregular tensor
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Experimental Setting

■ Competitors
❑ 3 existing PARAFAC2 decomposition methods for irregular 

tensors
■ PARAFAC2-ALS: PARAFAC2 decomposition based on ALS approach
■ RD-ALS: PARAFAC2 decomposition which preprocesses a given 

irregular tensor
■ SPARTAN: fast and scalable PARAFAC2 decomposition for irregular 

sparse tensors
■ Metric

❑ Fitness: 1 −
∑)*+
, 𝐗)'(𝐗) -
∑)*+
, 𝐗) -

■ Fitness close to 1 indicates that a model approximates 
a given input tensor well
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Q1. Performance
Trade-off

■ The upper-left region indicates better performance

DPar2 outperforms the competitors, giving up to 𝟔× faster
than competitors while having comparable fitness



Jun-Gi Jang (SNU) 26

Q1. Performance
Running Time

■ Measure preprocessing time and iteration time

■ Preprocessing time of Dpar2 is faster than RD-ALS 
which has preprocessing step for an irregular tensor

■ Iteration time of DPar2 is up to 𝟏𝟎. 𝟑× faster than 
competitors due to small compressed data
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Q2. Scalability

■ Measure scalability on synthetic irregular tensors

■ DPar2 is more scalable than other PARAFAC2 
decomposition methods in terms of both tensor size 
and rank

■ DPar2 gives near-linear machine scalability
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Q3. Discovery

■ Given Korean stock and US stock datasets in the form of (time, 
features, stock), we compare the results between the two 
datasets

1. Perform DPar2 for Korea stock and US stock datasets, 
respectively

2. For each dataset, compute Pearson Correlation Coefficient (PCC) 
between 𝐕(𝑖, ∶) which are a factor vector of a feature (e.g., 
opening price, trading volume, and technical indicators)

3. Visualize the correlations
❑ For effective visualization, we pick 4 price features and 4 

representative technical indicators 
■ 4 price features: the opening, the closing, the highest, and the lowest 

prices
■ 4 representative technical indicators: OBV, ATR, MACD, and STOCH
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Q3. Discovery

■ Due to the difference between the two markets in 
terms of market size, market stability, tax, investment 
behavior, etc., the patterns are different 

■ With DPar2, we efficiently analyze real-world irregular 
dense tensors
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Conclusion

■ (Algorithm) DPar2 is a fast and scalable PARAFAC2 
decomposition method for irregular dense tensors

■ (Experiment) DPar2 outperforms the previous 
PARAFAC2 decomposition methods on irregular dense 
tensors

■ (Discovery) With DPar2, we find interesting patterns in 
real-world irregular tensors
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Thank you !
https://datalab.snu.ac.kr/dpar2

https://datalab.snu.ac.kr/
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Updating Factor Matrices

Update Procedure 
of DPar2

Input: 𝐀!𝐅 ! 𝐄𝐃-(≈ 𝐗!) for 
𝑘 = 1,… , 𝐾, target rank 𝑅
Output: 𝐐!, 𝐇, 𝐒!, 𝐕 for
𝑘 = 1,… , 𝐾
§ Update 𝐐𝒌
§ Construct 𝓨
§ Update 𝐇
§ Update 𝐒!
§ Update 𝐕

■ Update 𝐐! ← 𝐙!" 𝐏!"
# using the 

compression results
■ Naïve Computation (High Cost)

❑ Compute 𝐀!𝐅 ! 𝐄𝐃-𝐕𝐒!𝐇 ∈ ℝ"!×$

❑ 𝐙!5 𝚺!5 𝐏!5
- ← 𝐀!𝐅 ! 𝐄𝐃-𝐕𝐒!𝐇 ∈

ℝ"!×$ by SVD
■ Our computation (Low Cost)

❑ Compute 𝐅 ! 𝐄𝐃-𝐕𝐒!𝐇 ∈ ℝ$×$

❑ 𝐙!𝚺!𝐏!- ← 𝐅 ! 𝐄𝐃-𝐕𝐒!𝐇 by SVD
❑ 𝐙!5 ← 𝐀!𝐙!, 𝚺!5 ← 𝚺!, 𝐏!5 ← 𝐏!

Since 𝐀! ∈ ℝ"!×' is a column orthogonal 
matrix, we avoid redundant computations 
for 𝐀! ⇒ reduce computational costs

Details


