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Overview

m Q. Given an irregular dense tensor, how can we

efficiently analyze the tensor?

o lIrregular tensor: a collection of matrices whose columns

have the same size and rows have different sizes from
each other

m A. DPar2, a fast and scalable tensor decomposition

method, efficiently analyzes the irregular tensor
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Irregular Dense Tensors

m Several real-world data are represented as irregular
dense tensors

o A collection of matrices whose columns have the same size
and rows have different sizes from each other
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Sensor type 1,

Sensor type 1,
Sensor type 2

Sensor type 1,

. Sensor type 2 Sensor type 2
Stocks An irregular Sensor
Index: (time, feature, stock) dense tensor Index: (time, location, sensor)
Value: measurement Value: measurement
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='“ PARAFAC2 Decomposition

s How can we analyze an irregular dense tensor?
s PARAFAC2 Decomposition

o A fundamental tool to analyze irregular tensors

o Recently, it has been re-popularized for analysis of
electronic health records (EHR) data represented as an
irregular tensor
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“%PARAFACZ Decomposition
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s Given an irregular tensor {X; }X_;, rank R
. Slice matrix X, € RIx*R

= Obtain obtain factor matrices Q;, € R'**k H € R/x*%,
S, € REXR VvV € RI*R for k=1,...,.K

m Objective function
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Application

m Several applications for PARAFAC2 decomposition

. Dimensionality reduction, anomaly detection, trend
analysis, and phenotype discovery

. For example, given a stock data (time, feature, stock)

OPENING PRV N VAC IR 0.27 0.39 -0.07 LA
HIGHEST [RECCES RS d 0.20 0.39 -0.08 X
LOWEST [EEERpH S 4 0.19 0.34 -0.06 X
CLOSING [RUEERERHUVISS 3 0.19 0.36 -0.07 EX

OBV 0.27 0.20 0.19 0.19

ATR J0.39 039 034 036

MACD 0.07 0.08 -0.06 -0.07

OPENING
HIGHEST
LOWEST
CLOSING
OBV
ATR
MACD
STOCH

(a) US stock data

Feature analysis

Q: MSFT
(a) Similarity based Result

Rank Stock Name Sector
1 Adobe Technology
2 Amazon.com Consumer Cyclical
3 Apple Technology
4 Moody’s Financial Services
5 Intuit Technology
6 ANSYS Technology
7 Synopsys Technology
8 Alphabet = Communication Services
9 ServiceNow Technology
10 EPAM Systems Technology
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=" Alternating Least Square

m ALS (Alternating Least Square) is widely used for
obtaining factor matrices of PARAFAC2
Decomposition

. Iteratively updates a factor matrix of a mode while fixing
all factor matrices of other modes

. (Heavy computational costs) Require computations with
a given tensor at each iteration
= For example, ALS needs to compute X, VS, H for all k at each

: : x
Iteration X, € RIkXJ VSkH e R/X
2 Its computational cost is O(Z’k{:l I, ]R) proportional to the size of
an irregular tensor
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‘”?_Olmltatlon of Previous Works

= Limitations of previous works

2 They fail to handle an irregular dense tensor,
efficiently

= Each iteration requires computations involved with
an irregular tensor

2 There remains a need for fully employing
multicore parallelism

We need to make PARAFAC2 decomposition faster and more
scalable, to analyze large-scale irregular dense tensors
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s We propose DPar2 (Dense PARAFAC2 Decomposition)

. A fast and scalable PARAFAC2 decomposition method for irregular
dense tensors

U, = QH
K
X (A, {F9} B DI Q H sV

- gt g

A given irregular g - Matrices compressed by Factor matrices of PARAFAC2 Decomposition
tensor exploiting randomized SVD using the compressed results

»
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. (Idea 1) Compressing an irregular tensor using randomized SVD
(Singular Value Decomposition)

. (Idea 2) Careful reordering of computations with the compression
results
m Exploiting properties of operations and matrices

. (Idea 3) Careful distribution of work between threads by
considering various lengths of matrices
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Compression

m Compressing an irregular tensor before iterations

o The result is much smaller than an input irregular tensor

K

X (A, {FW} B DI
[ J [ —
l J I J I J
< — > < . >
A given irregular Matrices compressed by
tensor exploiting randomized SVD

m The compression is performed once before iterations, and
only the compression results are used at iterations
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Compression

m Compressing an irregular tensor using Randomized SVD

. Randomized SVD (Singular Value Decomposition) efficiently
compresses matrices with low errors
s It efficiently computes X =~ USVT

m There are two compression stage

. Stage 1 - compress each slice matrix using randomized SVD
. Stage 2 - further compress the intermediate data from the first stage

Cc,B 2
A B ) (Ilk==1 %Bk)
SVDT;T"]:I" 1 i SVD""'"I:l""I
X, . :|:| I|:|:: ~ |:| :
1 T ' I ! ! E FT 1
| = ! | [ ! 1
——r— 0 f concatenation : D !
! [ O I— LI
X, ~i e 2 |
1 _B_zf ® ________ Thepreprocessedresults
A,
Stage 1 Stage 2
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Compression

m Stage 1 - compress each slice matrix using randomized SVD
. Forall k, compute X, = AkBkC?;

m Stage 2 - further compress the intermediate data from the

first stage
o Construct a matrix M = ||'k{=1CkBk by horizontally concatenating
CkBk F(l)
. Then, compute M ~ DEFT F=]:
F(X)

m The final output of the compression is AkF(k)EDT ~ Xj

. A, € RIEXR apnd F®) € REXR are generated from each slice matrix
5 Onlyone E € RF*R gnd D € R/*R are generated across all slice matrices

Due to the two-stage compression, we efficiently obtain the
compression results much smaller than an input tensor

Jun-Gi Jang (SNU) 14
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Updating Factor Matrices

s Update factor matrices by exploiting the
compression results

. (Naive approach) would update factor matrices after

reconstruction, but it requires high computational costs
and space costs

m (ldea) Careful reordering of computations with the
compression results

i

=

Matrices compressed by
exploiting randomized SVD

Factor matrices of PARAFAC2 Decomposition
using the compressed results
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" Updating Factor Matrices

/

Update Procedure
of DPar2

k=1,..,K,targetrank R
Output: Q,, H, S;, Vfor
k=1,.., K

= Update Q; <4mmm

= Update H

= Update S

& Update V

Input: A, FEDT (= X,) for

~

/

s Update Q, using the
compression results

s Naive Computation (High Cost)

a

a

Reconstruct slice matrices from the
compression results

Compute Qy, using the
reconstructed one

m Our computation (Low Cost)

Improve efficiency by avoiding
reconstruction and redundant
computations for A

= Exploit the property of A;, € RIx*J

= Ay is a column orthogonal matrix,
i.e., ALA; =1
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Updating Factor Matrices

/ \ m Update H, S,V
Update Procedure m Use small factorized matrices
of DPar2 (e. g, Ag, FO), E, D)

Input: A, FOEDT (~ X,,) for . They are much smaller than an

input tensor
k=1,..,K,t trank R ,
areetran m Carefully reordering of
Output: Q,, H, S;, Vfor

computations with the

k=1..K compression results

= Update Qg

= UpdateH <umm _ .

. UpdateS, <umm With these ideas, we reduce the

computational costs and avoid

= UpdateV <umm
\ i / generating large intermediate data

Jun-Gi Jang (SNU) 17




Updating Factor Matrices

/

Update Procedure

of DPar2

Input: A, FEDT (= X,) for
k=1,..,
Output: Q;, H, S,,V for
k=1,..,
= Update Qg

= UpdateH <umm
= UpdateS;, <umm

& UpdateV < /

K, targetrank R

K

~

m Update H, S,V

Naive computation with large matrices

Reduce the costs by
carefully reordering of
computations with the
compression results

Our computation with small matrices

Jun-Gi Jang (SNU)
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Time Length

Multi-core Parallelism

s Given an irregular tensor, the number of rows of
slice matrices is different

s For example, stocks have different time lengths due
to listing periods

f.':bzlooo-  The length of the
00 3 temporal dimension
By of input slices
"y | = o e We sort the lengths
0 2000 4000 0 2000 in descending order
Sorted Stock Index Sorted Stock Index
(a) US stock data (b) KR stock data

s No method considers this difference for parallelism

Jun-Gi Jang (SNU) 19



Multi-core Parallelism

a Careful distribution of work between threads by
considering various lengths of matrices

2 Computational costs of handling a matrix are proportional to its size

. Distribute matrices fairly
Naive approach - the
\ , _ across each thread
completion time varies . .
considering their size

=] 5 | ®

An input irregular
tensor —>
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=" Experimental Questions

s Q1. (Performance) How quickly and accurately
does DPar2 perform PARAFAC2 decomposition
compared to other methods?

m Q2. (Scalability) How well does DPar2 scale up with
respect to tensor size and target rank? How much
does the number of threads affect the running time

of DPar2?

m Q3. (Discovery) What can we discover from real-
world tensors using DPar2?

Jun-Gi Jang (SNU) 22




Dataset

m Dataset TABLE II
DESCRIPTION OF REAL-WORLD TENSOR DATASETS.
Dataset Max Dim. I;; Dim.J Dim. K Summary
FMA! [26] 704 2,049 7,997 music
Urban? [27] 174 2,049 8,455 urban sound
US Stock? 7,883 88 4,742 stock
Korea Stock?* [3] 5,270 88 3, 664 stock
Activity5 [28], [29] 553 570 320  video feature
Action® [28], [29] 936 570 567  video feature
Traffic® [30] 2,033 96 1,084 traffic
PEMS-SF’ 963 144 440 traffic

m Each slice matrix of an irregular tensor has different I,

m / is the size of the common axis
o The column size of slice matrices

m K is the number of slice matrices in an irregular tensor
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Experimental Setting

m Competitors

5 3 existing PARAFAC2 decomposition methods for irregular
tensors
= PARAFAC2-ALS: PARAFAC2 decomposition based on ALS approach

= RD-ALS: PARAFAC2 decomposition which preprocesses a given
irregular tensor

= SPARTAN: fast and scalable PARAFAC2 decomposition for irregular
sparse tensors

m Metric

ZIk{=1”Xk_xk“F)

2 Fitness: 1 — (
YR IXkllE

= Fitness close to 1 indicates that a model approximates
a given input tensor well
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Trade-off
m The upper-left region indicates better performance
O FMA + Urban A US Stock O KR Stock Y  Activity Q  Action O  Traffic ® PEMS-SF
DPar2 RD-ALS PARAFAC2-ALS MEEE SPARTAN
“Be,St D wH MBest A % Best 1.5% % Best _2.4x <
08 3.1x 4F 0.85 3.5% a, 0.97 0.94 «" ©
£ o 3.0x i 52 0x, w0 @
E0751 Rt ng._ 80% 9P & A = 025 092
/ Q 0.75 d w
093
0.7 1000 20 100 a 09 a8 16 32
Total Running Time (sec) Total Running Time (sec)

100
Total Running Time (sec)

(a) Trade-off

Total Running Time (sec)

(b) Trade-off

(c) Trade-off

(d) Trade-off

DPar2 outperforms the competitors, giving up to 6 X faster
than competitors while having comparable fitness

Jun-Gi Jang (SNU)
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Preprocessing Time (sec)
>

Q1. Performance
Running Time

Measure preprocessing time and iteration time
W DPar2 RD-ALS PARAFAC2-ALS @EEEE SPARTAN
O e 10.0x g
””” &
LN :
K]
<
§ 32><
g | [
5]
£
FMA  Urban US Stock KR Stock Activity Action Traffic PEMS-SF FMA  Urban US Stock KR Stock Activ vity Action Traffic PEMS-SF
Data Data

(a) Preprocessing time (b) Iteration time

Preprocessing time of Dpar2 is faster than RD-ALS
which has preprocessing step for an irregular tensor

Iteration time of DPar2 is up to 10. 3 X faster than
competitors due to small compressed data

Jun-Gi Jang (SNU) 26
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e Q2. Scalability

m Measure scalability on synthetic irregular tensors

DPar2 PARAFAC2-ALS —>¢— SPARTan RD-ALS
3]

:u':/ § 103 5 o -
] = = >
g 102 15.3% g 54 4 ///
= = 7.0% =%
o0 80 =) P
c £ 15.9% ) > Bl
i £ 3 21 7 5\0?
S . 2 107 @ o
& 10 5

10° R UR 0 20 % 4 50 i3 4 6 & 10

Tensor Size Rank Number of Threads
(a) Scalability for tensor size (b) Scalability for rank (c) Machine Scalability

m DPar2 is more scalable than other PARAFAC2
decomposition methods in terms of both tensor size
and rank

m DPar2 gives near-linear machine scalability

Jun-Gi Jang (SNU) 27
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Q3. Discovery

m Given Korean stock and US stock datasets in the form of (time,
features, stock), we compare the results between the two
datasets

1. Perform DPar2 for Korea stock and US stock datasets,
respectively

2. For each dataset, compute Pearson Correlation Coefficient (PCC)
between V(i, :) which are a factor vector of a feature (e.g.,
opening price, trading volume, and technical indicators)

3.  Visualize the correlations

a For effective visualization, we pick 4 price features and 4
representative technical indicators

- 4 price features: the opening, the closing, the highest, and the lowest
prices
n 4 representative technical indicators: OBV, ATR, MACD, and STOCH

Jun-Gi Jang (SNU) 28



= Q3. Discovery

m Due to the difference between the two markets in
terms of market size, market stability, tax, investment
behavior, etc., the patterns are different

1.0
OPENING ! SNOORVR-I IRl 0.27 0.39 -0.07 EVUEE] I OPENING [RECURS i LR 003 0.17 -0.14 WL
0.8
HIGHEST
-0.6

HIGHEST ? IR RO 0.20 0.39 -0.08 EVEE] 1.00 1.00 i KTW 0.04 0.19 -0.15 F¥

-0.6

LOWEST [CEERBEESKESNIN 0.19 0.34 -0.06 ¥ LOWEST [BELESKCESKIENELN 0.01 0.14 -0.16

0.4 -04

CLOSING EEEREEIESEEEEN 0.19 0.36 -0.07 FUE CLOSING [REERCETANN 004 037 -0.12 0
~02 -0.2
oBv [027 020 019 0.19 OBV [0.03 0.04 0.01 0.04
-0.0
-0.0
ATR 039 039 034 036 ATR 017 019 014 037

MACD |0.07 0.08 0.06 -0.07 MACD | 0.14 -0.15 -0.16 -0.12
-0.4
-—0.6

CHEN ST S C o O = B O o
Zz B B z na £ 8 B Z & B z = & 8 B
Z % § g © < § g Z £ & v © < I 9°
2 9 ©o S 2 2 9 09 8 = B
o =T = © o T = ©

(a) US stock data (b) Korea stock data

m With DPar2, we efficiently analyze real-world irregular
dense tensors
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Conclusion

m (Algorithm) DPar2 is a fast and scalable PARAFAC2
decomposition method for irregular dense tensors

{Xk}f:l {Ak}kK:1 {F(k) }k:1 E D7 Q. H Sk vT

= = - |-

& » &

A given irregular g Matrices compressed by Factor matrices of PARAFAC2 Decomposition
tensor exploiting randomized SVD using the compressed results

s (Experiment) DPar2 outperforms the previous

PARAFAC2 decomposition methods on irregular dense
tensors

m (Discovery) With DPar2, we find interesting patterns in
real-world irregular tensors

\ 4
A
4
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Thank you !

https://datalab.snu.ac.kr/dpar2
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/ Update Procedure \

k=1,..,

of DPar2

Input: A, FXEDT (= X,) for
K, targetrank R
Output: Q,, H, S;, Vfor
k=1,.., K

= Update Q; <4mmm

Construct Y
Update H
Update S,
Update V

a Update Q;, < Z,P." using the
compression results

s Naive Computation (High Cost)
. Compute A FOEDTVS, H € RIx*R
. ;3 PL" « A FROEDTVS,H €

Rx*R py SVD

s Our computation (Low Cost)
. Compute FKEDTVS, H € RR¥R
. 22 Pl « FRWEDTVS, H by SVD
0 Ly < ARZy, X < X, P < Py

/

Since A;, € R**/ js a column orthogonal
matrix, we avoid redundant computations
for A, = reduce computational costs
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